
Creating 3rd Generation Web APIs with Hydra
Markus Lanthaler

Institute for Information Systems and Computer Media
Graz University of Technology

Graz, Austria

mail@markus-lanthaler.com

ABSTRACT
In this paper we describe a novel approach to build hypermedia-
driven Web APIs based on Linked Data technologies such as
JSON-LD. We also present the result of implementing a first
prototype featuring both a RESTful Web API and a generic API
client. To the best of our knowledge, no comparable integrated
system to develop Linked Data-based APIs exists.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems and
Software – Linked Data, Web 2.0, World Wide Web (WWW).

Keywords
Web; Web services; REST; Linked Data; JSON-LD; Hydra

1. INTRODUCTION
Hyperlinks form the foundation of the World Wide Web. While
developers use them intuitively when building traditional Web
sites to guide visitors through their sites, they are often completely
missing from Web APIs. This results in tightly coupled and thus
brittle systems which cannot be evolved over time. Just as in first
generation SOAP-based Web Services all the possible interactions
are typically hardcoded into the clients instead of being communi-
cating the legal state transitions at runtime. Even though such
approaches might work in the short term, they are condemned to
break in the long term as assumptions about server resources will
break as resources evolve over time.
Second generation Web APIs go a step further and do use
hypermedia. Unfortunately most of these APIs rely on out-of-
band contracts to represent links. The reason is that they are build,
almost without exception, on formats that have no inherent
support for hypermedia; mostly XML and JSON. Clients thus rely
on specific structures to recognize links as such and the result is
almost the same as in first generation Web APIs: tightly coupled
systems that easily break.
In this paper we present a technology stack to create third genera-
tion Web APIs that do not suffer from the issues their ancestors
expose. This allows the creation of truly RESTful services with all
its benefits in terms of scalability, maintainability, and
evolvability. Furthermore we will demonstrate how such an
approach can be used to create generic API consoles and clients.

2. USING JSON-LD AND HYDRA TO
BUILD TRULY RESTFUL APIS
To build hypermedia-driven Web APIs the used serialization has
to have built-in support for hyperlinks. XML can be extended by
using the XML Linking Language (XLink) [1] to achieve that, but
in JSON, the prevalent format used in current Web APIs, no
similar, accepted extension exists. JSON-LD [2] is a format that
addresses this issue and, as we have shown in previous work [3],
is well-suited for RESTful services.
JSON-LD has been designed to provide a simple and convenient
serialization format for Linked Data based on JSON. Instead of
the triple-centric approach that other common serialization
formats for Linked Data use, an entity-centric approach was
chosen. The rationale was to resemble the programming models
most developers are familiar with and to reflect the way JSON is
used. This and the fact that JSON-LD is 100% compatible with
traditional JSON allow developers to build on existing infra-
structure investments.
While JSON-LD represents a generic serialization format, also a
shared vocabulary, understood by both the server exposing the
API and the client consuming it, is needed to implement a con-
crete Web API. Hydra ([4], [5]) is an attempt to define a minimal
vocabulary to achieve just that. It defines a number of concepts
commonly used in Web APIs and provides a vocabulary to
describe the domain application protocol of an API. Operations
build the core of the vocabulary as they allow the description of
the functionality provided by the API. Simply speaking,
operations map high-level business functionality to low-level
HTTP interactions. To be discoverable, operations can either be
bound to specific entity classes or properties thereof or be used
directly in representations.
In most cases, the responses returned by an API based on Hydra
and JSON-LD are almost indistinguishable from traditional
JSON-based services. Listing 1 shows the representation of an
issue. Apart from @context, the few JSON-LD specific

Copyright is held by the author/owner(s).
WWW 2013 Companion, May 13–17, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2038-2/13/05.

{

 "@context": "/demo/ctx/Issue.jsonld",

 "@id": "/demo/issues/1",

 "@type": "Issue",

 "title": "WWW2013 Paper",

 "description": "Write paper for WWW2013",

 "is_open": true,

 "raised_by": "/demo/users/1",

 "created_at": "2012-11-26T04:49:44Z",

 "comments": "/demo/issues/1/comments/"

}

Listing 1. An exemplary API response

keywords could be aliased to any desired string. The context
specifies how values in such a representation can be interpreted.
While created_at would be typed as a date/time string in this
example, comments would be marked as an IRI. Furthermore, the
context contains the mappings necessary to expand properties to
IRIs which makes it possible to retrieve more information.

Listing 2 shows the definition of the comments property. It
defines the property as a Hydra Link which means that its values
represent dereferenceable resources a client can interact with. The
range declaration further refines it by saying that the resources
will be instances of Hydra’s Collection class. The interesting
part, from the point of view of a client, is the operations
property. In this example, a single operation to create a new
comment is associated with the property. The operation declares
the expected data and the data returned on success. This allows a
client to construct a valid HTTP request if all required information
is available or to render a form to request the necessary data from
a user.
While this example uses proprietary properties and operations, it
would work exactly the same way if definitions from another API
or a centrally defined standard would be used instead. This unique
feature paves the way for a completely new breed of interoperable
Web APIs using decentralized, reusable, and composable
contracts. It allows developers to create clients that work with
various different APIs instead of having to create a specialized
client for each of them. It also simplifies standardization since
complex problems can easily be divided into smaller sub-
problems. Concrete implementations can then choose from a
variety of options and combine them to a new application. Given
that a lot of overlapping functionality exists in Web APIs, not
only within but also across verticals, we are convinced that this is
a crucial feature that every proposed solution should address.

3. CREATING GENERIC CLIENTS
The combination of JSON-LD and Hydra enables the creation of
machine-processable contracts that can be discovered at runtime.
This allows the implementation of completely generic clients,
such as API consoles or client libraries. To demonstrate the feasi-
bility of the principles and technologies presented in this paper,
we built a simple Web API featuring an issue tracker and
described it using Hydra. This illustrates how easily the proposed

approach can be integrated in real-world systems. Furthermore,
we developed two generic clients to access Hydra-powered Web
APIs. One client represents an API console allowing users to
interact with the API in a similar fashion they interact with normal
websites. The other client, which, due to space constraints is not
presented in this paper, is a small PHP library that can be used for
programmatic access. All components are open source and avail-
able on Hydra’s homepage [4].
The server component is based on Symfony2, a Web development
framework implemented in PHP. We extended Symfony2 by a
implementing a custom bundle, i.e., a plugin, which serializes
entities into JSON-LD representations. Furthermore, the bundle
generates machine-readable documentation using Hydra to
describe the entity types and their properties as well as the
affordances the system supports. The bundle relies on code anno-
tations to control the serialization of entities and the
documentation of their types. While this is more complex than
simply serializing and documenting all public members of an
entity, it provides much more flexibility. Compared to other con-
figuration mechanisms, annotations have the advantage that the
information is kept close to the source code it documents, which
makes it much easier to keep the two in sync. Once the entities
have been annotated, the code for the controllers implementing
the basic CRUD functionality can be generated can completely
automatically.
Listing 3 shows how the PHP class representing an issue can be
annotated. Elements that are exposed by the API are marked with
the @Hydra\Expose() annotation. Without parameters, the
system automatically generates an IRI for such elements as shown
in Listing 2. To allow reuse, it is also possible to map an element
to an existing IRI using the same mechanism. These annotations
are mainly used by the serializer to create representations and
contexts. The @Hydra\Operations annotation on the other hand,
is used to document the valid HTTP operations for an element.
The strings used in the example identify Symfony2 routes which

{

 "@id": "/demo/vocab#Issue/comments",

 "@type": "hydra:Link",

 "label": "Comments",

 "domain": "/demo/vocab#Issue",

 "range": "hydra:Collection",

 "operations": [

 {

 "@type": "/demo/vocab#CreateComment",

 "method": "POST",

 "label": "Creates a new comment",

 "expects": "/demo/vocab#Comment",

 "returns": "/demo/vocab#Comment"

 }

]

}

Listing 2. Definition of the comments property (excerpt)

/**

 * An Issue tracked by the system.

 *

 * @Hydra\Expose()

 * @Hydra\Operations({

 * "issue_replace",

 * "issue_delete"

 * })

 */

class Issue

{

 /**

 * The comments associated with this issue

 *

 * @Hydra\Expose()

 * @Hydra\Collection("issue_comments")

 * @Hydra\Operations("issue_comment_create")

 */

 private $comments;

 // ... other members and methods ...

}

Listing 3. The Issue class (excerpt)

correspond to specific controller methods. These methods specify
what data an operation expects, what data and status codes it
might return, and which HTTP method has to be used. This data is
used to create descriptions similar to the one shown in Listing 2.
The API console we developed as proof of concept shows the
feasibility of generic clients to access APIs powered by Hydra. It
is implemented as a single-page Web application using a number
of well-known libraries such as Bootstrap, Backbone, Underscore,
and a slightly modified JSON-LD processor. The JSON-LD
processor had to be modified to include additional information in
the parsed responses required by the response renderer for tooltips
etc.; otherwise a standard JSON-LD processor implementing the
JSON-LD API [6] could have been used as well. The functionality
of the client includes the retrieval of resource representations,
their parsing and rendering (which includes displaying the related
documentation), as well as the invocation of various HTTP
operations on embedded hyperlinks, which, in some cases, impli-
cates the dynamic creation of forms to gather the required data to
construct valid requests.

4. CONCLUSIONS AND FUTURE WORK
In this work we presented an approach to model and describe
RESTful APIs using Linked Data technologies such as JSON-LD,
RDF, and Hydra. We have shown that it is easy and practical to
integrate such an approach in current Web frameworks. In future
work we would like to refine Hydra and to implement various
tools to simplify developers’ lives. We would also like to
experiment with autonomous agents accessing APIs documented
in such a way.

5. REFERENCES
[1] S. DeRose, E. Maler, D. Orchard, and N. Walsh, “XML

Linking Language (XLink) Version 1.1,”
W3C Recommendation, 2010. [Online]. Available:
http://www.w3.org/TR/xlink11/.

[2] M. Sporny, G. Kellogg, and M. Lanthaler, “JSON-LD 1.0 - A
JSON-based Serialization for Linked Data,”
W3C Working Draft, 2013. [Online]. Available:
http://www.w3.org/TR/json-ld /.

[3] M. Lanthaler and C. Gütl, “On Using JSON-LD to Create
Evolvable RESTful Services,” in Proceedings of the
3rd International Workshop on RESTful Design (WS-REST)
at the 21st International World Wide Web Conference
(WWW2012), 2012, pp. 25-32.

[4] M. Lanthaler, “Hydra Core Vocabulary Specification,” 2013
(work in progress). [Online]. Available:
http://www.markus-lanthaler.com/hydra/.

[5] M. Lanthaler and C. Gütl, “Hydra: A Vocabulary for
Hypermedia-Driven Web APIs,” in Proceedings of the
6th Workshop on Linked Data on the Web (LDOW2013) at
the 22nd International World Wide Web Conference
(WWW2013), 2013.

[6] M. Lanthaler, G. Kellogg, and M. Sporny, “JSON-LD 1.0
Processing Algorithms and API,” W3C Working Draft, 2013.
[Online]. Available: http://www.w3.org/TR/json-ld-api/.

Figure 1. The API console showing a representation of an issue alongside its documentation

