
SAPS: Semantic AtomPub-based Services 

Markus Lanthaler 
1 

1 
Institute for Information Systems and Computer Media 

Graz University of Technology 

Graz, Austria 

Christian Gütl 
1, 2 

2
 School of Information Systems 

Curtin University of Technology 

Perth, Australia

 

 
Abstract—The utopian promise of a uniform service landscape 

in the form of SOAP, WSDL, and UDDI made by service-

oriented architectures (SOA) built on Web services has proven 

elusive. Instead more and more prominent Web service provid-

ers opted to expose their services based on the REST architec-

tural style. Nevertheless there are still problems on formal 

describing, finding, and orchestrating RESTful services. While 

there are already a number of different approaches, none so 

far has managed to break out of its academic confines. Thus, 

we propose a novel approach to build Semantic RESTful 

Services based on proven technologies. The combination of 

those proven technologies leads to scalable and loosely coupled 

systems and has the additional advantage, that developers are 

already familiar with its functioning. 

Keywords—Semantic Web; Web services; REST; Web 3.0; 

SAPS; Atom; OpenSearch; Internet; SOA 

I.  INTRODUCTION 

Service-oriented architectures (SOA) have gained increasing 
interest in both, research and business. Much effort has been in-
vested to make information accessible through Web services. 
But, while most current and previous research efforts mostly 
concentrate on traditional SOAP-based Web services, the 
utopian promise of uniform service interface standards, 
metadata, and universal service registries, in the form of the 
SOAP, WSDL, and UDDI standards has proven elusive. This 
and other centralized, registry-based approaches were 
overwhelmed by the Web’s rate of growth and the lack of a 
universally accepted classification scheme. Thus, the usage of 
SOAP-based services is mainly limited to company-internal 
systems and to the integration of legacy systems. Instead of 
SOAP-based services with their high perceived complexity, 
prominent Web service providers like Microsoft, Google, 
Yahoo, and others have opted to use lightweight, REST-style 
APIs. 

REST is an architectural style developed specifically for the 
Internet. It specifies constraints to enhance performance, scala-
bility, and resource abstraction within distributed hypermedia 
systems [1], [2]. But there are still problems on formal 
describing, finding and orchestrating RESTful services. 
Research on these issues has already started but none of the 
approaches so far has managed to break out of its academic 
confines. 

In this paper we introduce a new approach based on Atom 
Publishing, OpenSearch, SAWSDL, and the Linked Open Data 
vocabulary to build Semantic RESTful Services. The 
combination of those proven, standardized technologies leads to 
scalable and loosely coupled systems and has the additional 
advantage that developers are already familiar with its 
functioning. 

The remainder of this paper is organized as follows. First we 
outline REST’s main advantages. In section III and IV we 
discuss different proposals for service interface description 
formats respectively proposals for semantic annotation of 
(RESTful) Web services. In section V we explain our approach 
based on a simple example. Finally, the concluding remarks are 
presented in section VI. 

II. REPRESENTATIONAL STATE TRANSFER (REST) 

Even though many successful distributed systems have been 
built on RPC and RPC-oriented technologies, such as SOAP, it 
is known for quite some time that this approach is flawed 
because it ignores the differences between local and remote 
computing [2]. Another aspect is that SOAP breaks 
intermediaries for caching, filtering, monitoring, etc. by abusing 
HTTP as a pure transport protocol while it is in fact an 
application protocol. However, to ensure good performance, 
scalability, and maintainability in Internet-scale systems these 
intermediaries are “must haves”. 

REST [1] addresses exactly these issues allowing the 
creation of extensible, maintainable, and loosely-coupled distri-
buted systems at Internet-scale. The fact that the whole Web, the 
largest and most successful distributed system, is built on 
REST’s principles should be sufficient evidence of REST’s 
superior scalability and interoperability. 

The central feature that distinguishes REST’s architectural 
style from other network-based styles is its emphasis on a uni-
form interface. REST is defined by four interface constraints: 
1) identification of resources, 2) manipulation of resources 
through representations, 3) self-descriptive messages, and 4) 
hypermedia as the engine of application state. 

REST’s identification of resources constraint, which 
specifies that every resource has to be addressable, makes REST 
a natural fit for the Semantic Web vision [3] and creates a 
network of Linked Data; no parallel exists for SOAP’s remote 
method invocation. It follows that REST-based Web services 
are an ideal carrier for semantic data that would even provide 
the additional benefit of resource resolvability in human-
readable formats.  

The hypermedia as the engine of application state 
(HATEOAS) constraint refers to the use of hyperlinks in 
resource representations as a way of navigating the state 
machine of an application. According to Fielding [4], “a 
REST API should be entered with no prior knowledge beyond 
the initial URI (bookmark) and set of standardized media types. 
[…] From that point on, all application state transitions must be 
driven by client selection of server-provided choices that are 
present in the received representations or implied by the user’s 
manipulation of those representations.”  

While the “human Web” is unquestionably based on this 
type of interaction and state-control flow where very little is 



known a priori, machine-to-machine communication is often 
based on static knowledge and tight coupling. The challenge is 
thus to bring some of the human Web’s adaptivity to the Web of 
machines to allow the building of loosely coupled, reliable, and 
scalable systems. After all, a Web service can be seen as a 
special Web page meant to be consumed by an autonomous 
program as opposed to a human being. The Web already 
supports machine-to-machine communication, what is not 
machine-processable about the current Web is not the protocol 
(HTTP), it is the content. 

III. INTERFACE DESCRIPTION 

In order for two (or more) systems to communicate 
successfully there has to be an agreement or contract on the used 
interfaces and data formats. Such a contract can either be static 
or dynamic. In a static contract, knowledge about the other 
system’s model is embedded and cannot be updated without 
changing all involved clients. In a dynamic contract on the other 
hand, clients are capable of discovering knowledge about the 
contract at runtime and adjust accordingly. Hadley et al. [5] 
furthermore divide dynamic contracts into contextual and non-
contextual contracts. According to them, contextual contracts 
can be updated in the course of a conversation depending on the 
application’s state; conversely, non-contextual contracts are 
fixed and independent of the application’s state. 

In the traditional Remote Procedure Call (RPC) model, 
where all differences between local and distributed computing 
are hidden, usually static contracts in the form of an Interface 
Description Language (IDL) are used to specify those interfaces. 
In SOAP this is usually done by using WSDL and XML 
Schema. That way, automatic code generation on both, the 
client and the server side, are possible. 

In contrast REST’s HATEOAS constraint is characterized 
by the use of contextual contracts where the set of actions varies 
over time [5]. Additionally the interface variability is almost 
eliminated due to REST’s uniform interface. In consequence 
REST-based services are almost exclusively described by 
human-readable documentation describing the URLs and the 
data expected as input and as output. Even though it would be 
possible to describe REST services with WSDL 2.0, different 
other approaches have been proposed. Most of them were more 
or less ad-hoc inventions designed to solve particular problems 
and haven’t been updated for many years. The most recent, 
respectively only regularly updated proposals are, to our best 
knowledge, hRESTS (HTML for RESTful Services) [6] and 
WADL (Web Application Description Language) [7]. While 
WADL’s approach is closely related to WSDL (the developer 
creates a monolithic XML file containing all the information 
about the service interface), hRESTS idea is quite different. 
hRESTS uses microformats to annotate the human-readable 
HTML documentation with microformats to make it machine-
processable. Despite the number of proposals, none of the 
approaches has managed to gain wide acceptance. In practice 
most RESTful services are still solely described by a human-
readable documentation in the form of an HTML document. 

Given REST’s constraints, it is arguable whether REST 
even needs a interface description. We argue, in contrast to the 
before mentioned approaches, that the description of the re-
source representations, i.e., the data format, combined with the 
use of hypermedia should be enough to achieve a high degree of 
automation for RESTful services. 

IV. SEMANTIC ANNOTATION 

Most of the time, the syntactic description of a service’s 
interface is not enough as two services can have exactly the 
same syntactic definition but perform significantly different 
functions. Thus, services have to be annotated semantically; the 
resulting service is called a Semantic Web Service (SWS) or a 
Semantic RESTful Service (SRS). These supplemental semantic 
descriptions of the service’s properties can in consequence lead 
to higher level of automation for tasks like discovery, 
composition, and invocation. Since most SWS technologies use 
ontologies as the underlying data model they also provide means 
for tackling the interoperability problem at the semantic level 
and, more importantly, enable the integration of Web services 
within the Semantic Web. After a number of efforts (we would 
like to refer you to [9] for an extensive survey of the different 
approaches) semantic annotation of SOAP-based services is 
now preferably addressed by the W3C recommendation 
Semantic Annotations for WSDL and XML Schema 
(SAWSDL) [8].  

SAWSDL defines how to add semantic annotations to 
various parts of a WSDL document such as inputs, outputs, 
interfaces, and operations but it does not specify a language for 
representing the semantic models. It just defines how references 
to semantic models, e.g. ontologies, can be made. This lack of 
formal semantics hinders logic-based discovery and 
composition of Web services described with SAWSDL and calls 
for magic mediators outside the framework to resolve the 
semantic heterogeneities. One of the approaches to solve this 
issue is WSMO-Lite [10]. 

WSMO-Lite has been created as a lightweight service 
ontology to fill the SAWSDL annotations with concrete service 
semantics to allow bottom-up modeling of services. It describes 
four aspects of a Web service: 1) the Information Model, which 
defines the data model for input, output, and fault messages; 
2) the Functional Semantics, which define the functionality, 
which the service offers; 3) the Behavioral Semantics, which 
define how a client has to talk to the service; and 4) the Non-
functional Descriptions, which define non-functional properties 
such as quality of service or price. A major advantage of 
WSMO-Lite’s approach is that it is not bound to a particular 
service description format, e.g., WSDL. As a result WSMO-Lite 
can be used to integrate approaches like, e.g., hRESTS (in 
conjunction with MicroWSMO) or SA-REST with the 
traditional WSDL-based service descriptions. 

All the above mentioned approaches try to be as general as 
possible to allow the creation of suitable service annotations for 
a wide range of application domains. In contrast to that, there 
exist a number of service description formats such as 
OpenSearch [12] and the Atom Publishing Protocol [13] which 
are tailored for very specific application domains. The semantics 
of those descriptions are implicit, i.e., all services described by 
such an approach are created for the same or very similar use 
cases. As these two technologies are two of the key ingredients 
of SAPS, our approach proposed in chapter V, we describe them 
here in more detail. 

A. Atom 

The Atom suite consists of the Atom Syndication 
Format [14] and the Atom Publishing Protocol (also known as 
AtomPub) [13]. The Atom Syndication Format is a XML-
based format for publishers to syndicate content in the form of 



so called Web or news feeds. The Atom Publishing Protocol, on 
the other hand, is an application-level protocol for publishing, 
editing, and deleting Web resources. 

The Atom Syndication Format consists of two kinds of 
documents: feed documents and entry documents. A feed 
document is, as the name suggests, the representation of an 
Atom feed. It contains metadata about the feed and some or all 
of the entries associated with the feed. An entry document 
describes exactly one feed item outside the context of an Atom 
feed. It is worth mentioning that Atom documents must be well-
formed XML but are not required to be valid XML because the 
specification does not include a Document Type Definition 
(DTD) for them. Atom is designed to be an extensible format 
and so foreign markup (markup which is not part of the Atom 
vocabulary) is allowed almost anywhere in an Atom document. 

The Atom Publishing Protocol describes how a feed can be 
manipulated by a client. The so called service document 
describes the location and capabilities of one or more 
collections, i.e., feeds, which are grouped into workspaces. That 
information is needed by clients for authoring to commence. 

Both, the Atom Syndication Format as well as the Atom 
Publishing Protocol, are fully based on the REST architectural 
style and thus extremely Web-friendly. This, and the above 
mentioned extensibility, led to the adoption of AtomPub for the 
implementation of various kinds of Web services. The most 
prominent examples might be the Google Data Protocol 
(GData) [15] and Microsoft’s Open Data Protocol (OData) [16]. 
They use Atom’s extensibility to implement APIs for their 
services. It is thus arguable that Atom is one of the world’s most 
successful RESTful Web service stories. 

B. OpenSearch 

OpenSearch [12] is a collection of simple formats that allow 
the description of search engines’ interfaces as well as the 
publishing of search results in a format suitable for syndication 
and aggregation. OpenSearch allows search clients, such as Web 
browsers, to invoke search queries and process the responses. 
By now all major Web browsers support OpenSearch and use it 
to add new search engines to the browser’s search bar. This way 
the user can invoke a query directly from the browser without 
first having to load the search engine’s homepage. 

OpenSearch consists of four formats: 1) the description 
document, 2) the URL template syntax, 3) the response 
elements, and 4) the Query element. The OpenSearch 
description document describes the web interface of a search 
engine in the form of a simple XML document. It may also 
contain some metadata such as the name of the search engine 
and its developer. The URL template syntax represents a 
parameterized form of the URL by which a search engine is 
queried. Simply speaking it describes the used GET parameters 
to invoke a query. An example of such a template looks as 
follows: http://example.com/search?q={searchTerms}. 
All parameters are enclosed in curly braces and are by default 
considered to be part of the OpenSearch template namespace. 
By using the XML namespace prefix convention it is possible to 
add new parameter names, which brings extensibility. The 
OpenSearch response elements are used by search engines to 
augment existing XML formats such as Atom and RSS with 
search-related metadata. Finally, the OpenSearch Query element 
can be used to define specific search requests that can be 
performed by a search client, e.g., related queries in a search 
result element. 

V. SAPS: SEMANTIC ATOMPUB-BASED SERVICES 

The attempt to standardize Web services has taken years, 
but still there are no clear definitions of what constitutes a 
service at a conceptual level. While a number of different 
approaches have been proposed, none so far has managed to 
break out of its academic confines. We argue that the lack of 
acceptance of those approaches stems from the fact that they do 
not provide any imminent incentive and thus experience a 
classic chicken-and-egg problem. No services are semantically 
described because there are no applications making use of that 
information and no applications are developed because there are 
no semantically annotated services. Facebook’s recently 
introduced Open Graph Protocol clearly shows the willingness 
of Web site publishers to semantically annotate their content if it 
is easy enough and if there is an imminent incentive to do so; 
more than 50,000 sites implemented the protocol within the first 
week of its publication [17]. Another factor for the lacking 
acceptance is the high complexity of most of the approaches. 

To solve those and other problems, we propose SAPS 
(Semantic AtomPub-based Services), an approach which tries to 
create the machine counterpart of the human Web by combining 
different proven technologies. This will lead to scalable and 
loosely coupled systems and has the additional advantage that 
developers are already familiar with its functioning. This way, 
apart from the knowledge about the application domain, the 
client needs to know only the entry point (the URL of the ser-
vice’s homepage) and the used media types. The client then 
proceeds through the service by looking at one response at a 
time, each time evaluating how best to proceed given its overall 
goal and the available transitions. This strictly follows the 
HATEOAS constraint as described in section II. The most 
challenging part is how to communicate the domain knowledge 
without overburdening developers. 

The basic idea of SAPS is the use of semantically annotated 
schemas to allow clients to understand the payload. To ease the 
implementation of SAPS-based services as well as to enhance 
their interoperability, Atom Publishing and OpenSearch, two 
widely known technologies, are used. 

A. Motivating Example 

In order to illustrate the principles of the proposed approach, 
we use a service similar to the well-known Restbucks [18]. It is 
basically an online shop which allows looking for products, 
ordering them, and of course paying the order. The inspiration 
for that problem domain came from Gregor Hohpe’s obser-
vation [19] on how a busy coffee shop works. In his popular 
article Hohpe talks about synchronous and asynchronous 
messaging, transactions, exception handling, and scaling the 
message-processing pipeline in an everyday situation. 

B. Basic Concepts and Principles 

SAPS combines the Atom Syndication Format, the Atom 
Publishing Protocol, and the OpenSearch format and adds a 
semantic layer on top of them as shown in Figure 1. SAPS’ 
semantic layer consists of semantically annotated schemas 
describing the payload (the exchanged data), e.g., XML Schema 
with SAWSDL annotations or a semantically annotated JSON 
schema as described at the end of section C. This allows the 
usage of these normally domain-specific application formats in 
application domains different from content syndication and 
interface description of search engines. 



SAPS follows strictly the Atom specification. The use of 
most Atom elements is self-explanatory, but some elements 
require further clarification in the context of SAPS. E.g., in most 
of the cases it is not obvious how atom:title, atom:author, 

and atom:summary shall be used. SAPS takes a pragmatic 
approach for these fields: the title element should be used to 
create some-kind of human-readable representation of the item 
(e.g., if a product is represented its name could be used), the 
same applies for the summary element where required. The 
author element is a bit trickier; most of the time this element 
will either be empty or set by the server to some constant value. 
The other element which it might not be obvious how to use, is 

the app:categories element, in fact, it is not even obvious 
how to use it in traditional Atom documents as the specification 
does not assign any meaning to the content of this element [14]. 
In SAPS the categories element is used to give hints about the 
data in a collection by setting the scheme to the used ontology 
(e.g. the GoodRelations ontology) and the term to a used 
concept (e.g. GoodRelations’ Offering class). To describe the 
service’s search interface, OpenSearch is used. 

Given that Atom was designed as an extensible format, it is 
easy to integrate OpenSearch. The OpenSearch documents 
describing the search interface can either be directly embedded 

in Atom documents or be linked to by using Atom’s link tag. 
Atom uses Internet Media Types to define the acceptable 
payload formats. Unfortunately often this is not enough as 
media types can be too general to be of practical use and most of 
the time it is not practical to create a new proprietary media 
type. E.g., the popular application/xml media type is not 
concrete enough to allow the automatic construction of 
messages. Thus, more granular information in the form of 
schemas has to be added. This is done by SAPS’ newly defined 

attribute saps:schema. This allows specifying, additionally to 
the media type, a schema which can then in turn be used to 
automatically generate the payloads. 

To improve the efficiency SAPS introduces a saps:etag 
attribute which can be used in feeds to specify the ETag of 
every item. The saps:etag is equivalent to HTTP’s ETag 

header and can be used for conditional retrievals (GET using the 
If-None-Match HTTP header) as well as for optimistic 
concurrency control when updating or deleting entries (PUT or 

DELETE requests using HTTP’s If-Match header). 

C. Illustrative Implementation of the Motivating Example 

In this section we will show an illustrative implementation 
of the motivating example presented in section A to give a better 
understanding of SAPS. 

First of all, we need to define the different involved 
resources. By analyzing the workflows described in the example 
we are able to extract the following resources: orders, products, 
and payments. Those resources are accessed by three actors: the 
customers, the cashiers, and the baristas. It is obvious that the 
actors have different privileges and need to authenticate 
themselves to the system, but for the sake of simplicity this 
example does not address those issues and assumes that every 
actor performs only the actions he is allowed to. 

Just like for a normal website we start by building the 
service’s homepage. This is done by creating an Atom service 
document containing a reference to an OpenSearch description 
document; both enhanced with semantic information. The 
service homepage includes collections for the available products 

and the orders. Payments are not included in the homepage 
because there is no use case to justify that. 

The products collection has an empty accept element 
which specifies that the products collection does not support the 
creation of new entries. The category of the collection is set to 

GoodRelations’ [20] Offering class so that clients are able to 
understand the meaning (the semantics) of this collection. These 
categories could also be used to store information about the 
behavior as well as non-functional descriptions of the service.  

<?xml version="1.0" encoding='utf-8'?> 

<service xmlns="http://www.w3.org/2007/app" 

        xmlns:atom="http://www.w3.org/2005/Atom" 

        xmlns:saps="http://www.purl.org/saps"> 

 <workspace> 

   <atom:title>Coffee Shop Service</atom:title> 

   <collection href="/products" > 

     <atom:title>Products</atom:title> 

     <accept /> 

     <categories fixed="yes"> 

       <atom:category  

         scheme="http://purl.org/goodrelations/v1#" 

         term="http://purl.org/goodrelations/v1#Offering" 

         label="Products" /> 

     </categories> 

    <atom:link rel="search" 

      type="application/opensearchdescription+xml"  

      href="http://api.example.com/productsearch.xml"/> 

   </collection> 

   <collection href="/orders" > 

     <atom:title>Orders</atom:title> 

     <accept saps:schema="/schemas/purchase-order.xsd"> 

       application/xml 

     </accept> 

     <categories fixed="yes"> 

       <atom:category scheme= 

          "http://www.purl.org/net/ontology/order.owl#" 

         term="http://www.purl.org/net/ontology/  

           order.owl#PurchaseOrder" 

         label="Orders" /> 

     </categories> 

   </collection> 

 </workspace> 

</service> 

Furthermore, the products collection contains a link to an 
OpenSearch description document which allows searching for 
products either by generic search terms (full-text search) or by 
an EAN code. As shown in the following OpenSearch 
description, the EAN code is linked to GoodRelations’ 

hasEAN_UCC-13 property to make it understandable to a client.  

HTTP(S) 

TCP/IP 

Atom AtomPub OpenSearch 

SAPS’ Semantic Layer 

XSD 

SAWSDL 

JSON 

JSON Schema+ 

… 

… 

Figure 1.  SAPS’ layer cake 



<?xml version="1.0" encoding="UTF-8"?>       

<OpenSearchDescription 

     xmlns="http://a9.com/-/spec/opensearch/1.1/"> 

  <ShortName>Product Search</ShortName> 

  <Description>Search for products</Description> 

  <Url xmlns:gr="http://purl.org/goodrelations/v1#" 

    type="application/atom+xml;type=feed" 

    template="http://api.example.com/?q= 

     {searchTerms?}&amp;ean={gr:hasEAN_UCC-13?}" /> 

</OpenSearchDescription> 

The orders collection is, in contrast to the products 
collection, writable. It accepts new orders in the form of 

XML documents complying with the purchase-order.xsd 
XML schema. The category is set to SchemaWeb’s [21] 
PurchaseOrder class. We intentionally used two different 
ontologies for the products and the orders to highlight that the 
client of a service has to implement mappings between the 
different ontologies, i.e., it has to “understand” their meaning. If 
there is a one-to-one mapping between different ontologies the 
service provider is able to use both ontologies in the semantic 
annotation to point this out. 

A client is now able to search for products and create a pur-
chase order. It can, e.g., search for a product with the EAN code 
2300000010015 by issuing a GET request as described in the 
OpenSearch description document: 

GET /?q=&ean=2300000010015 HTTP/1.1 

Host: api.example.com 

 

HTTP/1.1 200 OK 

Content-Type: application/atom+xml;type=feed 

 

<?xml version="1.0" encoding="utf-8"?> 

<feed xmlns="http://www.w3.org/2005/Atom" 

 xmlns:opensearch="http://a9.com/-/spec/opensearch/1.1/"> 

  <title type="text">Search for EAN 2300000010015</title> 

  <updated>2010-02-08T12:29:29Z</updated> 

  <author> 

    <name>example.com</name> 

  </author> 

  <link rel="search" 

    type="application/opensearchdescription+xml"  

    href="http://api.example.com/productsearch.xml"/> 

  <opensearch:totalResults>1</opensearch:totalResults> 

  <opensearch:startIndex>1</opensearch:startIndex> 

  <opensearch:itemsPerPage>10</opensearch:itemsPerPage> 

  <opensearch:Query 

     xmlns:gr="http://purl.org/goodrelations/v1#" 

     role="request" 

     searchTerms="" 

     ean="gr:hasEAN_UCC-13" 

     startPage="1" /> 

  <entry> 

    <title>Cappuccino</title> 

    <summary>A hot cappuccino for 1.99 EUR</summary> 

    <id>tag:example.org,2003:3.2397</id> 

    <link rel="alternate" type="text/html" 

       href="http://example.org/products/P4197.html" />  

    <link rel="alternate" type="application/xml" 

       href="http://api.example.org/products/P4197.xml"/> 

    <updated>2009-07-31T12:29:29Z</updated> 

    <published>2008-12-13T08:29:29-04:00</published> 

    <content type="application/xml" 

      <product xmlns="http://example.com/products" 

        xmlns:xsi="http://www.w3.org/2001/XMLSchema- 

           instance" 

         xsi:schemaLocation="http://example.com/products 

           http://example.com/products.xsd"> 

         <id>http://api.example.org/products/P4197</id> 

         <label>Cappuccino</label> 

         <ean>2300000010015</ean> 

         <sku>P4197</sku> 

         <price>1.99</price> 

         <description>...</description> 

      </product> 

    </content> 

  </entry> 

</feed> 

The associated product XML schema is defined as follows: 

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" 

    xmlns:sawsdl="http://www.w3.org/ns/sawsdl"> 

  <xsd:element name="product" type="ProductType" 

     sawsdl:modelReference="http://purl.org/goodrelations/ 

       v1#Offering" /> 

  <xsd:complexType name="ProductType"> 

    <xsd:sequence> 

      <xsd:sequence> 

      <xsd:element name="id" type="xsd:anyURI" /> 

        <xsd:element name="label" type="xsd:string" 

           sawsdl:modelReference="http://www.w3.org/2000/ 

              01/rdf-schema#label" /> 

        <xsd:element name="ean" type="xsd:string" 

           sawsdl:modelReference="http://purl.org/ 

              goodrelations/v1#hasEAN_UCC-13" /> 

        <xsd:element name="sku" type="xsd:string" 

           sawsdl:modelReference=" 

              http://purl.org/ 

                goodrelations/v1#hasStockKeepingUnit 

              http://www.purl.org/net/ 

                ontology/order.owl#PartNumber" /> 

        <xsd:element name="price" type="xsd:decimal" 

           sawsdl:modelReference="http://purl.org/ 

              goodrelations/v1#hasCurrencyValue" /> 

        <xsd:element name="description" type="xsd:string" 

           sawsdl:modelReference="http://www.w3.org/2000/ 

              01/rdf-schema#comment" /> 

      </xsd:sequence> 

    </xsd:sequence> 

  </xsd:complexType> 

</xsd:schema> 

Due to the SAWSDL annotations in the product and the 
order XML schema, the client is able to extract the SKU of the 
product and create a purchase order by sending an order 
XML document to the server. Obviously the client has to have 
knowledge about desired quantities and acceptable price ranges 
but that is part of the client’s business logic and thus beyond the 
scope of this paper. 

Finally the server will guide the client to the payment by 
returning a link for the payment: 

<link rel="next http://example.com/ontology/payment"  

   href="/order/1684/payment" type="application/xml" 

   saps:schema="/schemas/payment.xsd" title="Payment" /> 

In order to guarantee a loose coupling of the client and the 
server, the schemas have to be retrieved and interpreted on-the- 
fly at runtime and not at design time. This is in contrast to the 
traditional SOAP-practice where the schemas are used at design 
time to generate static proxy classes to interact with the service. 

It should be highlighted that this approach is not limited to 
XML representations. Any other media type can be used as well 
as long as the client is able to automatically create 
representations in that format. It is, e.g., imaginable to use JSON 
as the transport format by using the application/json media 
type in conjunction with semantically annotated JSON schemas. 
A possible solution would be to enhance proposals like Kris 

Zyp’s JSON Schema [22] with a modelReference attribute. 



{ 

  "name": "Product", 

  "properties": { 

    "id": { 

      "description": "Product identifier (URL)", 

      "type": "string" 

    }, 

    "label": { 

      "description": "Name of the product", 

      "type": "string", 

      "modelReference": "http://www.w3.org/2000/01/ 

          rdf-schema#label" 

    }, 

    "ean":{ 

      "description": "The EAN code of the product", 

      "type": "string", 

      "modelReference": "http://purl.org/ 

          goodrelations/v1#hasEAN_UCC-13" 

    } 

  } 

} 

D. Comparison to Related Work 

Instead of trying to semantically describe existing services, 
as most previous proposals do, SAPS introduces a new model to 
create semantic Web services encouraging developers to reuse 
existing ontologies as much as possible. The services created 
according to SAPS are, by design, completely RESTful. 

Since SAPS is based on the Atom protocol suite it is similar 
to previous efforts such as Google’s Data Protocol (GData) [15] 
or Microsoft’s Open Data Protocol (OData) [16]. The difference 
to GData is that the allowed elements are described in a 
machine-readable manner in the form of a schema instead of 
defining them just in a human-readable form. This makes it 
more similar to Microsoft’s OData. But, in contrast to that 
approach, SAPS uses standardized building blocks such as 
XML Schema (XSD) and SAWSDL to do so instead of defining 
a completely new and proprietary data model as Microsoft does. 
This not only creates interoperable and standard-conform 
services, but also aligns SAPS to the vision of a Semantic Web. 

E. Current Limitations 

This paper introduces a first version of SAPS. Due to its 
early development stage it still has a number of limitations, 
especially regarding efficiency. The current version of SAPS 
does not support any kind of partial requests or responses, i.e., 
retrieving or updating just part of a representation instead of the 
whole representation. This is closely related to the limited 
expressiveness for describing the search interface. OpenSearch 
currently does not support any operators in search queries. Last 
but not least no batch operations are currently supported; we are 
currently evaluating the use of multipart requests to do so. 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper we proposed SAPS, a new approach to create 
semantically annotated Web services by combining different 
proven technologies. We believe its simplicity and nativity to 
both the Web and the Semantic Web will result in higher 
acceptance compared to previous efforts for building semantic 
RESTful services. The design of our approach strictly follows 
REST’s constraints leading to reliable, scalable, loosely 
coupled, and, in consequence, reusable systems. By basing the 
approach on well-known technologies we hope to lower the 
barrier for developers to provide semantic Web services.  

For future work we aim to develop prototype modeling-tools 
as well as client libraries and conduct performance evaluations 
in scenarios of different complexity. The next version of SAPS 
should clearly address the current limitations described in the 
previous section as well as examine other optimizations. 

REFERENCES 

[1] R.  T. Fielding, “Architectural styles and the design of network-based 
software architectures,” Ph.D. dissertation, Dept. Inform. Comput. 
Sci., Univ. California, Irvine, USA, 2000. 

[2] M. Lanthaler and C. Guetl, “Towards a RESTful service ecosystem - 
perspectives and challenges,” in Proc. of the 4th IEEE Int. Conf. on 
Digital Ecosystems and Technologies (DEST), Dubai, U.A.E, 2010. 

[3] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,” 
Scientific Amer., vol. 284, no. 5, pp. 34-43, May 2001. 

[4] R. T. Fielding, “REST APIs must be hypertext-driven,” Untangled 
musings of Roy T. Fielding. [Online]. Available: http://roy.gbiv.com/
untangled/2008/rest-apis-must-be-hypertext-driven. 

[5] M. Hadley, S. Pericas-Geertsen, and P. Sandoz, “Exploring 
hypermedia support in Jersey,” in Proc. of the 1st Int. Workshop on 
RESTful Design - WS-REST '10, pp. 10-15, Raleigh, North Carolina. 

[6] J. Kopecký, K. Gomadam, and T. Vitvar, “hRESTS: an HTML 
microformat for describing RESTful Web services”, in Proc. 2008 
IEEE/WIC/ACM Int. Conf. Web Intelligence and Intelligent Agent 
Technology, pp. 619-625, 2008. 

[7] M. J. Hadley, “Web Application Description Language (WADL)”, 
Aug. 2009. [Online]. Available: 
http://www.w3.org/Submission/2009/SUBM-wadl-20090831/. 

[8] Semantic Annotations for WSDL and XML Schema (SAWSDL), 
W3C Recommendation, 2007. 

[9] M. Lanthaler, M. Granitzer, and C. Gütl, “Semantic Web services: 
state of the art,” in Proc. of the IADIS Int. Conf. on Internet 
Technologies & Society (ITS 2010), Perth, Australia, 2010.  

[10] T. Vitvar, J. Kopecký, J. Viskova, and D. Fensel, “WSMO-Lite 
annotations for Web services,” in Proc. 5th European Semantic Web 
Conf., LNCS 5021, pp. 674-689, Tenerife, Spain, 2010. 

[11] A. P. Sheth, K  Gomadam, and J. Lathem, “SA-REST: semantically 
interoperable and easier-to-use services and mashups”, IEEE Internet 
Computing 11, vol. 6, pp. 84-87, Nov./Dec. 2007. 

[12] C. DeWitt, “OpenSearch 1.1 Draft 4” [Online]. Available: 
http://www.opensearch.org/Specifications/OpenSearch/1.1. 

[13] The Atom Publishing Protocol. [Online]. Available: 
http://tools.ietf.org/html/rfc5023. 

[14] The Atom Syndication Format. [Online]. Available: 
http://tools.ietf.org/html/rfc4287. 

[15] Google Data Protocol. [Online]. Available: 
http://code.google.com/apis/gdata/. 

[16] Open Data Protocol. [Online]. Available: http://www.odata.org/. 

[17] S. L. Huang, “After f8 - resources for building the personalized 
Web,” Facebook Developer Blog. [Online]. Retrieved from 
http://developers.facebook.com/blog/post/379 on July 7, 2010.  

[18] J. Webber, S. Parastatidis, and I. Robinson, “How to GET a cup of 
coffee,” InfoQ. [Online]. Retrieved on January 5, 2010 from 
http://www.infoq.com/articles/webber-rest-workflow. 

[19] G. Hohpe, “Your coffee shop doesn’t use two-phase commit,” IEEE 
Software, vol. 22, issue 2, pp. 64-66, 2008. 

[20] M. Hepp, “GoodRelations language reference,” E-Business and Web 
Science Research Group. Retrieved on March 11, 2010 from 
http://www.heppnetz.de/ontologies/goodrelations/v1. 

[21] SchemaWeb PurchaseOrder Ontology. Retrieved on March 11, 2010 
from http://www.schemaweb.info/schema/SchemaInfo.aspx?id=253. 

[22] K. Zyp, “A JSON media type for describing the structure and 
meaning of JSON,” IETF Internet-Draft. [Online]. Available: 
http://tools.ietf.org/html/draft-zyp-json-schema-02. 


