
Hydra: A Vocabulary for Hypermedia-Driven Web APIs
Markus Lanthaler 1

1
 Institute for Information Systems and Computer Media

Graz University of Technology
Graz, Austria

mail@markus-lanthaler.com

Christian Gütl 1, 2
2
 School of Information Systems
Curtin University of Technology

Perth, Australia

christian.guetl@iicm.tugraz.at

ABSTRACT
Coping with the ever-increasing amount of data becomes

increasingly challenging. To alleviate the information overload

put on people, systems are progressively being connected directly

to each other. They exchange, analyze, and manipulate

humongous amounts of data without any human interaction. Most

current solutions, however, do not exploit the whole potential of

the architecture of the World Wide Web and completely ignore

the possibilities offered by Semantic Web technologies. Based on

the experiences gained by implementing and analyzing various

RESTful APIs and drawing from the longer history of Semantic

Web research we developed Hydra, a small vocabulary to describe

Web APIs. It aims to simplify the development of truly RESTful

services by leveraging the power of Linked Data. By breaking the

descriptions down into small independent fragments, a new breed

of interoperable Web APIs using decentralized, reusable, and

composable contracts can be realized.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems and

Software – Semantic Web, World Wide Web (WWW).

H.4.3 [Information Systems Applications]: Communications

Applications – Internet. D.2.11 [Software]: Software Archi-

tectures – Service-oriented architecture (SOA)

Keywords
Web; Web service; Web API; HTTP; REST; Linked Data; RDF;

vocabulary; ontology; Hydra

1. INTRODUCTION
Never before in human history has access to information been

easier. Knowledge is being shared at an unprecedented scale and

the Internet enables frictionless communication across continents

in fractions of a second. This abundance of data is increasingly

becoming a challenge for humans to cope with. To address this

issue, more and more systems are connected directly to each

other. They exchange, analyze, and manipulate humongous

amounts of data without any human interaction.

In very large and loosely coupled systems, such as the Internet,

the unavoidable heterogeneity has to be embraced and the fact that

the data quality and meaning are fuzzy has to be accepted. The

combination of Semantic Web technologies and the architectural

style of the Web, REST [1], may prove to be a viable path to

achieve that. Their combination enables data integration at large

scale and solves some of the problems Web developers are con-

tinuously struggling with.

Unfortunately, the Linked Data principles in specific and

Semantic Web technologies in general, have not yet found wide-

spread adoption in the design of RESTful Web APIs. The funda-

mentally different models of Semantic Web technologies with

their open world assumption, the lack or immaturity of tools, and

the (perceived) complexity are just some of the reasons for this

lack of adoption. At the same time, the community is just about to

truly understand REST. While some of its constraints such as

stateless interaction, uniform interface, identification of resources,

or manipulation of resources through representations are most of

the time respected, others are rarely implemented correctly;

regardless of a service claiming to be RESTful or not. Primarily

the constraints that demand self-descriptive messages and require

the use of hypermedia as the engine of application state are often

ignored. While the Linked Data community spends most of their

efforts on the accurate description of resources, which could be

compared to the self-descriptive messages constraint, the linking

of data got little attention. Linked Data advocates the use of

dereferenceable identifiers but leaves it open how to recognize

them as RDF has no built-in notion of hypermedia. It uses URIs

solely as identifiers. The best a client can do is to blindly try to

interact with these URIs.

To address these issues we developed Hydra, a lightweight

vocabulary to describe Web APIs and to augment Linked Data

with hypermedia controls. This enables developers to leverage

RDF’s expressivity with REST’s benefits in terms of loose

coupling, evolvability, and scalability. It also enables the creation

of interoperable Web APIs that are accessible by generic clients.

The reminder of this paper is organized as follows. In section 2,

we describe the inherent differences between data models as used

in programming languages and vocabularies intended for the

Web. After presenting and discussing Hydra in section 3, we give

an overview of related work in section 4. Finally, we conclude the

paper in section 5.

2. DATA MODELS VS. VOCABULARIES
Current Web APIs typically have a well-defined data model, but

unfortunately it is, most of the time, only documented in natural

language. This documentation typically defines a number of
LDOW2013, May 14, 2013, Rio de Janeiro, Brazil

Copyright is held by the author/owner(s).

JSON objects (classes) with their properties. Properties are

marked as optional or required, specify their value space, and

typically define whether they are read-only (e.g. server-assigned

identifiers), write-only (e.g. password[s), or read-write. Advanced

features such as inheritance are rarely used—or at least not

exposed to the clients.

The first step to transform a classic JSON-based Web API into a

Linked Data API is to uniquely identify classes and properties

with Internationalized Resource Identifiers (IRIs). At that point,

the first difference between RDF’s data model and the class-based

programming paradigm most developers are familiar with be-

comes obvious.

In RDF, properties have, just as classes and everything else that is

identified with an IRI, global scope and independent semantics. In

contrast, properties in the models used by most Web APIs are

class-dependent. Their semantics depend on the class they belong

to. In data models classes are typically described by the properties

they expose whereas in RDF properties define to which classes

they belong. If no class is specified, it is assumed that a property

may apply to every class. This behavior stems from the fact that

RDF Schema [2] and OWL [3], the two preferred languages to

describe RDF vocabularies, work under an open-world assump-

tion. In contrast, data models used by programmers typically work

under a closed-world assumption. The difference is that when a

closed world is assumed, everything that is not known to be true is

false or vice-versa. With an open-world assumption the failure to

derive a fact does not automatically imply the opposite; it em-

braces the fact that the knowledge is incomplete. One of the

effects illustrating the difference in those world views is that in

data models an instance of a class also belongs to all its super-

classes, but not any other class. In ontologies using an open-world

assumption, the same cannot be said unless classes are explicitly

defined as being disjoint.

These differences have interesting consequences. For example,

the commonly asked question of which properties can be applied

to an instance of a specific class cannot be answered for RDF.

Strictly speaking, any property which is not explicitly forbidden

could be applied. This may sound counter-intuitive and could lead

to the wrong conclusion that RDF Schema and OWL cannot be

used to define data models. In fact they can, but that is not their

intended use.

While data models are used to describe the information in a spe-

cific, well-delimited application domain; vocabularies, as de-

scribed by RDF Schema or OWL, are used to define concepts that

can be shared across multiple application domains. In other

words, data models are typically used to specify validity criteria

and constraints for data processed within an application whereas

vocabularies are used to reason over data to discover new

knowledge. In this light, data models can be said to be intended

for closed-world systems whereas vocabularies are intended for

open, distributed systems. This may sound surprising as the moti-

vation for most Web APIs is to build open distributed systems.

However, as a matter of fact, most current Web APIs just repre-

sent small, closed-world systems that happen to be accessible over

a standardized protocol with a uniform interface, i.e., HTTP.

Neither the entities, nor the concepts defined by such a Web API

can be reused in other systems without special glue code. To

simplify data integration and enable reuse, it would thus be sen-

sible to describe the data and behavior exposed by a Web API

using RDF vocabularies. Keeping in mind their different intended

use, we designed Hydra [4], a small vocabulary extending

RDF Schema by concepts required to describe Web APIs.

3. HYDRA
Even though RDF uses IRIs as identifiers, it has no inherent sup-

port for hypermedia. Whether an IRI is intended to be derefer-

enced or not, depends implicitly on what it represents. FOAF’s

homepage property, e.g., suggests that its values are

dereferenceable IRIs. The Linked Data principles postulated by

Berners-Lee [5] go a step further and recommend that all IRIs are

dereferenceable. The results are large, interconnected graphs of

data. Unfortunately, however, these graphs remain largely read-

only representations—just as most of the document Web was

read-only at the beginning. To change this, a shared vocabulary

able to describe affordances beyond simple dereferenceability is

needed. Hydra is an attempt to define these missing concepts.

The basic idea behind Hydra is to provide a vocabulary which

enables a server to advertise valid state transitions to a client. A

client can then use this information to construct HTTP requests

which modify the server’s state so that a certain desired goal is

achieved. Since all the information about the valid state transitions

is exchanged in a machine-processable way at runtime instead of

being hardcoded into the client at design time, clients can be

decoupled from the server and adapt to changes more easily.

3.1 Vocabulary
Figure 1 illustrates the Hydra core vocabulary (the figure’s inten-

tion is to show how Hydra is used rather than its precise defini-

tion). At its center stands the ApiDocumentation class which

represents, just as its name suggests, the documentation of a Web

API. It enables a server to define the main entry point and to

document the classes and properties as well the operations it sup-

ports. Furthermore, it enables HTTP status codes to be associated

with additional information. Such descriptions may also be con-

structed and returned dynamically in response to client requests.

This may sometimes be necessary as HTTP status codes are often

not specific enough, making it difficult to understand the real

cause of an error. For instance, a 400 Bad Request response is
rarely informative enough by itself.

Even though entities are identified by IRIs in RDF this does not

imply that these IRIs are dereferenceable. In fact, neither RDF

itself nor RDF Schema or OWL defines a concept to describe

dereferenceable IRIs. Hydra’s Resource class does just that. It is a

subclass of RDF Schema’s Resource class and can be used to

signal a client that an IRI is dereferenceable and can be used to

retrieve further information. This allows distinguishing Linked

Data from data where IRIs are used exclusively as identifiers.

Similarly, the Link class can be used to define properties whose

values are known to be dereferenceable IRIs.

It is not always possible for a server to create a complete link. For

instance, links to query a server often require parameters which

have to be filled at runtime by the client. To support such func-

tionality, Hydra uses URI Templates [6]. An IriTemplate (URI

templates are allowed to contain all characters that are legal in

IRIs; for consistency we thus decided to name the class

IriTemplate instead of UriTemplate) consists of a template

and a number of mappings. Each IriTemplateMapping maps a

variable in the IRI template to a property. This allows a client

to understand the meaning of the various variables and to replace

them with concrete values in order to expand the IRI template to

an IRI. Analogous to Link, there exists a property class

TemplatedLink to create recognizable properties whose value is

an IriTemplate.

To enable clients to interact with a Web API beyond simple GET

requests, Hydra contains the notion of operations. An operation

represents the information necessary for clients to construct valid

HTTP requests in order to manipulate the server’s resource state.

As such, each Operation consists of a required HTTP method and

optional expects and returns types. Similarly to the

ApiDocumentation itself, operations may also document

statusCodes that might be returned. This allows a developer to

understand what to expect when invoking an operation. It has,

however, not to be considered as an extensive list of all potentially

returned status codes; it is merely a hint. Developers should

expect to encounter other HTTP status codes as well.

The alert reader might wonder why operations have no property to

specify the target IRI. The reason for this is that operations are

either bound to classes or link properties or directly associated

with the resources they apply to. This means that the target IRI is

communicated at runtime instead of being defined at design time.

If an operation is bound to a class, it will apply to all its instances

which will be dereferenceable resources (they are ignored for

blank nodes). Similarly, if an operation is bound to a Link or a

TemplatedLink, it will apply to the corresponding IRI value.

Figure 1. The Hydra core vocabulary

A difficult design decision we had to make was how to inform a

client which data a server expects for a certain operation. Classes

would lend themselves but, as we discussed earlier, in RDF it is

practically impossible to say which properties belong to a class.

This in turn makes it impossible for a client to know which data it

has to send to a server in order to achieve a certain goal. It also

makes it difficult to inform a client (or a developer for that matter)

what it might expect in responses from a server. We decided to

choose the simplest and most pragmatic solution, i.e., to augment

a class definition with its supportedProperties. This not only

solves the problem at hand, but also enables properties from other

vocabularies to be reused directly.

Each SupportedProperty consists of a property and optionally

some flags specifying whether it is required, readonly, or

writeonly. Read-only properties cannot be modified by a client

and are useful for information such as creation dates or, e.g.,

authorship information that gets set by the server based on login

credentials. Write-only properties, on the other hand, are useful

for things like passwords that a client can change but not retrieve.

To ensure Hydra helps bootstrapping Web API development, it

includes a small number of commonly used concepts. Since a lot

of APIs deal with basic CRUD functionality, Hydra has three

built-in types of operations, namely CreateResourceOperation,

DeleteResourceOperation, and ReplaceResourceOperation.

As their name suggest, they can be used to indicate to a client that

an operation results in a resource being created, deleted, or re-

placed. Hydra does not restrict the mapping of these operation

types to HTTP methods which means that a concrete delete opera-

tion might be mapped to a POST request. This is an intentional

design decision to not unnecessarily restrict Hydra’s expressivity.

The user is responsible for the mapping of operations to sensible

HTTP requests respecting their semantics. It is purely the HTTP

method which defines whether a method is idempotent or safe.

The operation describes the result at a higher level of abstraction

and can easily be reused across different Web APIs. This is one of

the aspects which enable the creation of generic clients.

Similarly to the predefined operation classes, Hydra defines clas-

ses for collections, another commonly concept in Web APIs. A

Collection is simply a container pointing to a number of

members. In Hydra, each of those members is a dereferenceable

Resource. Since often it is desired to not serve the whole col-

lection at once, but to separate it into pages instead, Hydra also

defines a specialized PagedCollection. Additionally to its mem-

bers, it may also specify the number of itemsPerPage, the

totalItems and links to the firstPage, the nextPage, the

previousPage, or the lastPage. This way, a client can easily

navigate through a collection. Furthermore, Hydra’s search

property, whose value is an IriTemplate, might be used to query

such a collection. The currently only predefined property to use in

such a mapping is freetextQuery. For small Web APIs, these

built-in concepts are often enough to build and document the vast

majority of the functionality.

3.2 Discussion
Normally, when using Linked Data, a machine-client has no

choice but to try whether a specific IRI dereferences to a docu-

ment providing further information about the concept or not. The

reason is that RDF lacks any notion of hypermedia or interaction

models since IRIs are solely used as identifiers. This is one of the

most fundamental hurdles to overcome when combining the

Representation State Transfer (REST) architectural style [1] with

the Linked Data principles [5]. Other formats, such as, e.g.,

HTML have multiple hypermedia action controls that can be

embedded within the representations returned by a server. Hydra

therefore provides generic concepts such as links and operations

that can be used to augment Linked Data representations with

actionable information.

One of the design decisions was whether these controls should be

optimized to be embedded directly into every single representa-

tion, or whether a separate document should be the preferred way

to describe those affordances. We choose the latter approach for a

number of reasons. First of all, the responses from most Web

APIs are rather uniform, meaning that in a Web API there usually

exist a small number of response “types” that are all completely

consistent. This is quite different compared to human-facing Web

sites where different pages differ heavily in order to keep their

users engaged. Secondly, in contrast to a human user, a machine

agent has no problems to remember a number of affordances and

to apply them consistently to elements contained in responses. A

similar approach would be prohibitive on the human Web since

the resulting cognitive load put on humans would be way too

heavy. Finally, an approach collecting the affordances supported

by a server in a single description document is what programmers

are already familiar with. This is not only the predominant form of

documentation for Web APIs, but for APIs in general. The rea-

soning behind it is to allow a developer to quickly understand the

capabilities of a server or programming library without having to

traverse the whole state space.

This knowledge concentration of supported affordances in a cen-

tral description leads to another interesting question that is left

open for most current Web APIs, namely, how to discover that

description. The typical approach is to fall back to a human oper-

ator which browses an API publisher’s website to locate the API

description. That is a valid approach given that the API descrip-

tion is rarely machine-readable anyway. However, if the API

document is machine-readable as it is the case for Hydra, it would

be a serious limitation if the discovery of that description docu-

ment would require human intervention. Therefore, Hydra uses an

HTTP Link header [7] to direct a client to the corresponding API

document. The link relation used in such a Link header corre-

sponds to the IRI of Hydra’s apiDocumentation property. This

enables the dynamic discovery of the API description at runtime

and works across different APIs. As soon as an API links to re-

sources of a different API, a client can recognize the different API

description and adopt itself accordingly. Since the API description

is not bound to the API’s host, it becomes possible to rely on

central, standardized API descriptions resulting in an even looser

coupling between the client and the server. RDF’s use of globally

unique identifiers furthermore allows parts of API descriptions to

be shared and reused which improves interoperability and reduces

costs. Hydra’s built-in, predefined operation types are a first step

in that direction. We believe that it is possible to extract and

standardize similarly reusable concepts for a wide variety of

application domains. This builds the base for the creation of

generic clients as we have shown in previous work [8].

Considering Hydra’s focus on reusability of concepts between

different APIs, the question may arise why Hydra itself does not

reuse other existing vocabularies apart from RDF Schema. The

reason is simple. Hydra tries to address Web developers which do

not necessarily have profound knowledge of Semantic Web

technologies. As such, a simple, coherent, and self-contained

vocabulary is easier to understand. Using, e.g., OWL class ex-

pressions [3] to specify required properties in the request class

used in an operation would simply be too complex. In other cases,

the potential reuse from vocabularies is too small to be justifiable.

The HTTP vocabulary [9] is such an example. The only overlap-

ping concepts are Hydra’s HTTP method and statusCode proper-

ties. Such a small overlap does not represent a reasonable argu-

ment to include a dependency to a vocabulary. We did, however,

align Hydra’s concepts with the corresponding concepts in the

HTTP vocabulary which results in almost the same benefits with-

out producing an unnecessary dependency. In cases where related

vocabularies exist but are not stable yet, we decided to postpone

the decision. An example for this is the Linked Data Platform

vocabulary [10] which we will discuss in more detail in the

related work section.

4. RELATED WORK
While the semantic description of SOAP-based Web Services has

been extensively researched, efforts targeting RESTful Web APIs

have been quite limited. There exist a number of approaches for

both semantic and syntactic descriptions, but most of them violate

one of REST’s most fundamental constraints, the use of

hypermedia.

The most often discussed approach to describe RESTful services

syntactically is the Web Application Description Language

(WADL) [11]. It describes a service by exposing a number of URI

templates with associated information such as the HTTP method

and the required inputs to construct a request. This clearly indi-

cates that hypermedia is not supported. Furthermore, WADL

urges the use of specific resource hierarchies which introduces an

obvious coupling between the client and the server. Servers

should have the complete freedom to control their own

namespace.

Swagger [12] follows a similar approach but is, in contrast to

WADL which is XML-based, JSON-based. The biggest differ-

ence to WADL is that it does not impose any specific resource

hierarchy. Other than that, it allows to associate almost exactly the

same information to URI templates: an HTTP method, request

parameters, response type, hints for returned status codes, and

natural language descriptions. Swagger is mainly intended to

enrich human-facing API documentations with interactive con-

trols so that the various operations can be simply tested but it also

enables the automatic generation of client libraries. This makes it

very similar to Google’s API Discovery Service [13] which fol-

lows a very similar approach and is mainly used to generate client

libraries in different programming languages for Google’s numer-

ous Web APIs.

Since all these approaches describe a Web API just syntactically,

WSDL 2.0 [14] could in principle be used as well—but typically

it is perceived to be too heavy for lightweight Web APIs. Over the

years, the research community proposed a number of approaches

enriching the syntactic descriptions with machine-readable

semantics. SA-REST and hRESTS are probably the best-known

representatives of this kind. Since an extensive review of all pro-

posed approaches and ontologies would go beyond the scope of

this paper, we refer the interested reader to our previous work [15]

for a detailed review.

To the best of our knowledge, there exist only two approaches

apart from Hydra combining RDF’s data model and expressivity

with REST’s use of hypermedia, namely SEREDASj and

RESTdesc.

SEREDASj [16] is our previous effort to address the problem. It is

a simple JSON-based format which focuses on the description of

JSON resource representations and their interconnections. JSON

responses can be mapped to concepts in a vocabulary and the

same mechanism can be used to describe request templates. The

key difference to all other approaches is that SEREDASj allows

hyperlinks to be extracted from ordinary JSON responses. This

allows developers to build hypermedia-driven clients and to trans-

form JSON representations into RDF. The combination of these

two features also allows the data exposed by a Web API to be

modified using SPARQL queries [17]. Despite some very promis-

ing prototypes, we found, from working with different developers,

that the complete separation of the description layer from the data

itself is suboptimal. Effectively it creates a second layer of inter-

connected resources on top of the data in JSON documents. This

increased the cognitive load and made it difficult for developers to

understand documents without at the same time looking at the

SEREDASj description document. Furthermore, the syntax, which

is based on JSON Schema, was often considered to be too

verbose. Ultimately, these reasons lead to the development of

Hydra and the use of JSON-LD as the serialization format as

described in [8].

RESTdesc [18] is a promising effort aiming at the same goals as

Hydra but using, at least at first sight, a radically different ap-

proach. It expresses functional descriptions of Web APIs in

Notation3 [19], a data format extending RDF’s data model by

concepts such as variables. These functional descriptions are

composed of preconditions which entail certain postconditions,

such as the existence of an HTTP request. A client thus needs to

express its goal in terms of postconditions. If the preconditions are

fulfilled, it becomes possible to deduce a HTTP request that, when

executed, results in the desired post-conditions. It is worth noting

that the HTTP request is part of the postconditions and not of the

preconditions. This means that the data returned by a reasoner

contains the HTTP request as if it would have been part of the

input data. If several potential requests (or a chain of requests) are

returned, it becomes difficult to interpret the data. It is also not

entirely clear how the result of HTTP requests that are part of a

requests chain are fed back into the data, i.e., how blank nodes are

replaced with IRIs. Since Hydra descriptions can easily be trans-

formed into RESTdesc descriptions, in the long term it would be

interesting to investigate the potential offered by the use of

reasoning technologies. However, in the short term we believe

that a more gradual introduction to Semantic Web technologies is

necessary to achieve widespread adoption.

Given the fact that it is being standardized at the W3C and the

recent attention it got, it is worth comparing Hydra to the Linked

Data Platform (LDP) [10]. While there appears to be quite some

overlap between the Hydra and LDP the underlying assumptions

and goals are quite different. The Linked Data Platform defines,

just as Hydra, concepts such as resources and collections but it is

misses any notion of operations. Effectively this means that, at

least at the current stage, the Linked Data Plaform does not go

beyond defining a standardized CRUD interface to manage re-

sources in collections. It could thus be characterized as an RDF

version of the Atom Publishing Protocol [20]. The interaction

models are almost identical. Collections can be used to store

(more or less) opaque RDF documents. LDP has neither built-in

support for the semantic description of operations other than

CRUD nor does it allow the description of supported properties,

classes, etc. The only way for a client to find out which properties

are supported is to POST an RDF document to a collection which

creates a new resource. It then has to inspect that resource to

verify that all the data has been stored and no properties have been

discarded. Given these differences, the Linked Data platform

cannot be compared to Hydra in any means. It is questionable

whether mainstream Web developers will see enough compelling

reasons to adopt such an approach given that the same func-

tionality can be achieved with much simpler, proven approaches

such as the Atom Publishing Protocol [20].

5. CONCLUSIONS
The combination of the REST architectural style and the Linked

Data principles offer opportunities to advance the Web of

machines in a similar way that hypertext did for the human Web.

Most building blocks exist already and are in place but they are

rarely used together. Hydra tries to fill that gap. It allows data to

be enriched with machine-readable affordances which enable

interaction. This not only addresses the problem that Linked Data

is still mostly read-only, but it also paves the way for a completely

new breed of interoperable Web APIs. The fact that it enables the

creation of composable contracts means that interaction models of

Web APIs can be reused at an unprecedented granularity.

In future work we would like to turn our attention to other aspects

which are of interest for most Web APIs, e.g., authentication.

Hydra was designed to be a modular vocabulary so that future

companion vocabularies can be easily created to extend Hydra’s

expressivity. Furthermore, we would like to investigate how the

availability of machine-processable information can be used in the

development process. Since the functionality can be described

before it is implemented, testing, e.g., can commence much

earlier.

6. REFERENCES
[1] R. T. Fielding, “Architectural Styles and the Design of

Network-based Software Architectures,” PhD dissertation,

Department of Information and Computer Science,
University of California, Irvine, 2000.

[2] D. Brickley and R. V. Guha, “RDF Vocabulary Description

Language 1.0: RDF Schema,” W3C Recommendation, 2004.
[Online]. Available: http://www.w3.org/TR/rdf-schema/.

[3] “OWL 2 Web Ontology Language,” W3C Recommendation.

W3C, 2009. [Online]. Available:

http://www.w3.org/TR/owl2-overview/.

[4] M. Lanthaler, “Hydra Core Vocabulary Specification,” 2013

(work in progress). [Online]. Available: http://www.markus-

lanthaler.com/hydra/. [Accessed: 22-Feb-2013].

[5] T. Berners-Lee, “Linked Data,” Design Issues for the World

Wide Web, 2006. [Online]. Available: http://www.w3.org/

DesignIssues/LinkedData.html. [Accessed: 06-Jun-2010].

[6] J. Gregorio, R. T. Fielding, M. Hadley, M. Nottingham, and

D. Orchard, “RFC6570: URI Template,” Internet

Engineering Task Force (IETF) Request for Comments,

2012. [Online]. Available: http://tools.ietf.org/html/rfc6570.

[7] M. Nottingham, “RFC5988: Web Linking,” Internet

Engineering Task Force (IETF) Request for Comments,

2010. [Online]. Available: http://tools.ietf.org/html/rfc5988.

[8] M. Lanthaler, “Creating 3rd Generation Web APIs with

Hydra,” in Proceedings of the 22nd International World Wide

Web Conference (WWW2013), 2013.

[9] J. Koch, C. A. Velasco, and P. Ackermann, “HTTP

Vocabulary in RDF 1.0,” W3C Working Draft, 2011.

[Online]. Available: http://www.w3.org/TR/HTTP-in-

RDF10/. [Accessed: 15-May-2011].

[10] S. Speicher and M. Hausenblas, “Linked Data Platform 1.0,”

W3C Working Draft, 2012. [Online]. Available:

http://www.w3.org/TR/2012/WD-ldp-20121025/.

[Accessed: 05-Nov-2012].

[11] M. J. Hadley, “Web Application Description Language,”

W3C Member Submission, 2009. [Online]. Available:

http://www.w3.org/Submission/wadl/.

[Accessed: 05-Mar-2010].

[12] “Swagger: A simple, open standard for describing REST

APIs with JSON,” Reverb Technologies, 2013. [Online].

Available: https://developers.helloreverb.com/swagger/.

[Accessed: 04-Mar-2013].

[13] “Google APIs Discovery Service,” Google Inc., 2013.

[Online]. Available: https://developers.google.com/

discovery/. [Accessed: 07-Mar-2013].

[14] R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana,

“Web Services Description Language (WSDL) Version 2.0,”

W3C Recommendation, 2007. [Online]. Available:

http://www.w3.org/TR/wsdl20/.

[15] M. Lanthaler, M. Granitzer, and C. Gütl, “Semantic Web

Services: State of the Art,” in Proceedings of the IADIS

International Conference on Internet Technologies & Society

(ITS 2010), 2010, pp. 107–114.

[16] M. Lanthaler and C. Gütl, “A Semantic Description

Language for RESTful Data Services to Combat

Semaphobia,” in Proceedings of the 2011 5th IEEE

International Conference on Digital Ecosystems and

Technologies (DEST), 2011, pp. 47–53.

[17] M. Lanthaler and C. Gütl, “Aligning Web Services with the

Semantic Web to Create a Global Read-Write Graph of

Data,” in Proceedings of the 9th IEEE European Conference

on Web Services (ECOWS 2011), 2011, pp. 15–22.

[18] R. Verborgh, T. Steiner, D. Van Deursen, S. Coppens,

J. G. Vallés, and R. Van de Walle, “Functional Descriptions

as the Bridge between Hypermedia APIs and the Semantic

Web,” in Proceedings of the 3rd International Workshop on

RESTful Design (WS-REST 2012), 2012, pp. 33–40.

[19] T. Berners-Lee and D. Connolly, “Notation3 (N3): A

readable RDF syntax,” W3C Team Submission, 2011.

[Online]. Available: http://www.w3.org/

TeamSubmission/n3/. [Accessed: 07-Mar-2013].

[20] J. Gregorio and B. de HOra, “RFC5023: The Atom

Publishing Protocol,” Internet Engineering Task Force

(IETF) Request for Comments, 2007. [Online]. Available:

http://tools.ietf.org/html/rfc5023.

