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Abstract—Despite significant research and development efforts, 

the vision of the Semantic Web yielding to a Web of Data has not 

yet become reality. Even though initiatives such as Linking Open 

Data gained traction recently, the Web of Data is still clearly out-

paced by the growth of the traditional, document-based Web. 

Instead of releasing data in the form of RDF, many publishers 

choose to publish their data in the form of Web services. The 

reasons for this are manifold. Given that RESTful Web services 

closely resemble the document-based Web, they are not only per-

ceived as less complex and disruptive, but also provide read-write 

interfaces to the underlying data. In contrast, the current 

Semantic Web is essentially read-only which clearly inhibits net-

working effects and engagement of the crowd. On the other hand, 

the prevalent use of proprietary schemas to represent the data 

published by Web services inhibits generic browsers or crawlers 

to access and understand this data; the consequence are islands 

of data instead of a global graph of data forming the envisioned 

Semantic Web. We thus propose a novel approach to integrate 

Web services into the Web of Data by introducing an algorithm 

to translate SPARQL queries to HTTP requests. The aim is  to 

create a global read-write graph of data and to standardize the 

mashup development process. We try to keep the approach as 

familiar and simple as possible to lower the entry barrier and 

foster the adoption of our approach. Thus, we based our proposal 

on SEREDASj, a semantic description language for RESTful 

data services, for making proprietary JSON service schemas 

accessible. 

Keywords—Web services; Web APIs; Semantic Web; Linked 

Data; SEREDASj; SPARQL; JSON; REST; Internet 

I. INTRODUCTION 

Despite the recent uptake of the Linked Data movement, 

the vision of a Semantic Web, which has been around for more 

than fifteen years, still has a long way to go before mainstream 

adoption will be achieved. The reasons for this are manifold. 

First of all the Semantic Web suffers from a classical chicken-

and-egg problem as there are no clear incentives for developers 

to use it. This aspect is improving recently as major search en-
gines started to index some structured data such as RDFa and 

microformats. Another factor, especially in the enterprise 

space, is that the Semantic Web is perceived as a disruptive 

technology, making it a show-stopper for organizations need-

ing to evolve their systems and build upon existing infra-

structure investments. Additionally, the current Semantic Web 

approaches usually provide just read-only interfaces to the 

underlying data. This clearly limits the usefulness and inhibits 

networking effects and engagement of the crowd. Beside these 

technical issues, a lot of developers are simply overwhelmed 

by the complexity, perceived or otherwise, or are just reluctant 

to use new technologies. Nevertheless, we think most Web 

developers fear to use Semantic Web technologies for some 

reason or another; a phenomenon we denoted as 

Semaphobia [1]. To help developers get past this fear, and to 

show them that it is baseless, clear incentives along with simple 

specifications and guidelines are necessary. Wherever possible, 

upgrade paths for existing systems should be provided to build 

upon existing investments. RESTful data services could prove 

to be a viable solution to these problems. 

Contrary to the adoption of the Semantic Web, Web 

services, especially RESTful ones using JSON (JavaScript 

Object Notation) [2] as the serialization format, are increa-

singly popular. Recently the term Web API has emerged as the 

collective name for RESTful Web services in order to 

distinguish them from their flawed [3] SOAP-based counter-

parts. Thus, throughout this paper, the terms Web API and 

RESTful Web service are considered interchangeable. 

According to ProgrammableWeb’s statistics [4], 2010 has 

seen a twofold increase in new APIs per month compared to 
the year before. 74% of the APIs are now RESTful and 45% of 

them use JSON as the data format; some of the biggest service 

providers’ APIs such as, e.g., Facebook’s Graph API [5], are 

now JSON-only. It is interesting to note that more and more 

companies are starting to build APIs as their primary product 

instead of just providing APIs as extensions of existing 

products; their whole business model is now based upon their 

APIs. In spite of their growing adoption, Web APIs still have 

some shortcomings. 

The major problem of RESTful services is that no agreed 

machine-readable description format exists to document them. 

All the required information of how to invoke them and how to 
interpret the various resource representations is communicated 

out-of-band by human-readable documentations. In conse-

quence, machine-to-machine communication is often based on 

static knowledge and tight coupling to resolve those issues. The 

challenge is thus to bring some of the human Web’s adaptivity 

to the Web of machines to allow the building of loosely 

coupled, reliable, and scalable systems. After all, a Web service 



can be seen as a special Web page meant to be consumed by an 

autonomous program as opposed to a human being. Another 

issue is the prevalent use of proprietary schemas to represent 

data by these Web APIs. This inhibits the ability of generic 

browsers or crawlers to access and understand this data. 

Since REST’s principles align well with Linked Data 

principles, it would seem natural to combine their strengths. 
Nevertheless, the two remain largely separated in practice. 

Instead of providing Linked Data via RESTful Web services, 

current efforts deploy centralistic SPARQL endpoints or 

Tabulator-like interfaces, or simple upload static dumps of the 

data in order to provide access to the data. This rarely reflects 

the nature of the data, i.e., descriptions of interlinked resources. 

Just as public SQL endpoints are uncommon nowadays, public 

SPARQL endpoints are not expected to become widespread in 

the near future. This is because it is considerably more 

expensive to expose SQL or SPARQL endpoints than easier-to-

optimize RESTful service interfaces. We thus propose an 

approach were Web services are integrated with data in RDF 

and accessed by using SPARQL. 

In [1] we laid out the foundation for the integration of 

RESTful data services and the Web of Data by creating a 
semantic description language for JSON services. We choose 

to base our approach on JSON instead of XML to avoid the 

inherent impedance mismatch between XML and object 

oriented programming constructs (the so called O/X impedance 

mismatch). JSON, the JavaScript Object Notation [2] was 

specifically designed for data interchange. It is a lightweight, 

language-independent data-interchange format that is easy to 

parse, and easy to generate. Furthermore, it is much less com-

plex than XML as its specification [2] consists of merely four 

pages (ten pages in total, including the table of content and 

other mostly irrelevant material).  

The primary contribution of this work is a new model for 
read-write capable Linked Data applications by integrating 

JSON services into the Web of Data. This aims to generalize 

the application respectively mashup development by 

homogenizing the proprietary schemas used in today’s Web 

services to a common data format, namely RDF. The approach 

is based on SEREDASj, a semantic description language for 

JSON services we introduced in [1]. 

The reminder of the paper is organized as follows. First, in 

section II, we give an overview of related work. Then, in 

section III we briefly present SEREDASj. After discussing the 

requirements in section IV, we propose a novel approach to 
integrate Web services into the Linked Data cloud in section V 

by introducing an algorithm to translate SPARQL queries to 

HTTP requests in section VI. Finally, section VII concludes the 

paper and gives an overview of future work. 

II. RELATED WORK 

As previously outlined, one of the limitations of the current 
Semantic Web is that it usually just provides a read-only 

interface to the underlying data. SPARQL [6], the standardized 

query language for RDF just defines how to retrieve data, not 

how to manipulate it. This limitation is addressed by 

SPARQL Update [7], which is still a working draft. So, while 

several Semantic Web browsers, such as Tabulator [8], 

Oink [9] or Disco [10], have been developed to display RDF 

data, the challenge of how to edit, extend or annotate this data 

has so far been left largely unaddressed. There exist a few 

single-graph editors including RDFAuthor [11] and 

ISAViz [12] but, to our best knowledge, Tabulator Redux [13] 

is the only editor that allows the editing of graphs derived from 

multiple sources. 

To mitigate this situation, the pushback project [14] was 

initiated in 2009 (unfortunately it is not clear whether this 

project is still active) to develop a method to write data back 

from RDF graphs to non-RDF data sources such as Web APIs. 

This surely makes a lot of sense as large parts of the current 

Web of Data are generated from non-RDF databases by tools 

such as D2R [15] or Triplify [16]. The approach chosen by the 
pushback project was to extend the RDF wrappers, which 

transform non-RDF data from Web APIs to RDF data, to 

additionally support write operations. This is achieved by a 

process referred to as fusion that automatically annotates an 

existing HTML form with RDFa. The resulting RDForm then 

reports the changed data as RDF back to the pushback 

controller which in turn relays the changes to the RDF write-

wrapper that then eventually translates them into an HTTP 

request understandable to the Web API. One of the major 

challenges is to create the read-write wrappers as there are no 

agreed standards for describing RESTful services; neither 

syntactically nor semantically. Exposing these Web APIs as 

Linked Data is therefore more an art than a science and thus the 

numerous proposals for describing RESTful services follow 

quite different approaches. 

SA-REST [17] and hRESTS [18] are two approaches that 

enrich the, mostly already existing human-readable HTML 

documentation with RDFa or microformats to make it 

machine-processable. The biggest difference between them is 

that SA-REST has some built in support for semantic annota-

tions whereas hRESTS provides nothing more than a label for 

the inputs and outputs. SA-REST uses the concept of lifting 

and lowering schema mappings to translate the data structures 

in the input and outputs to the data structure of an ontology, the 
grounding schema, to facilitate data integration. 

MicroWSMO [19] is an extension for hRESTS adding similar 

semantic annotations. 

The Web Application Description Language (WADL) [20] 
falls in another category as it is closely related to WSDL. 

WADL describes a service by creating a monolithic XML file 

containing all the information about the service interface. This 

syntactic description of the service can then be semantically 

annotated by, for instance, SBWS (Semantic Bridge for Web 

Services) [21]. In principle, a RESTful service could even be 

described by using WSDL 2.0 with SAWSDL and an ontology 

like OWL-S or WSMO-Lite. As a complete description of 

these ontologies and interface description formats is beyond the 

scope of this paper we would like to refer you to [22]. 



The problem with all of the above described approaches is 

that they rely heavily on RPC’s (Remote Procedure Call) 

flawed [3] operation-based model ignoring the fundamental 

architectural properties of REST. Instead of describing the re-

source representations, and thus allowing a client to understand 

them, they adhere to the RPC-like model of describing the in-

puts and outputs as well as the supported operations which 

results in tight coupling. The obvious consequence is that these 

approaches do not align well with clear RESTful service 
design. 

One of the approaches avoiding the RPC-orientation, and 

thus more suitable for RESTful services, is ReLL [23], the 

Resource Linking Language. It is a language to describe 

RESTful services with emphasis on the hypermedia 

characteristics of the REST model. This allows, e.g., a crawler 

to automatically retrieve the data exposed by Web APIs. One 

of the aims of ReLL is to transform this data to RDF in order to 

harvest those already existing Web resources and to integrate 

them into the Semantic Web. Nevertheless, ReLL does not sup-

port any semantic annotations but relies on XSLT transforma-

tions to do so. This clearly limits ReLL’s expressivity as it is 
not able to describe the resource representations semantically. 

To overcome these and other shortcomings we introduced 

SEREDASj [1], the description language for SEmantic REstful 

DAta Services. It is similar to ReLL in that it focuses on the 

description of resource representations and their 

interconnections. It also allows, just as ReLL+XSLT, to trans-

form these representations to RDF. But instead of being based 

upon XML as ReLL is, SEREDASj is based on JSON. By hav-

ing built-in support for semantic annotations in contrast to the 

transformation process being driven by XSLT transformations, 

SEREDASj supports more use cases. It is, e.g., possible to 
create whole service documentations out of SEREDASj 

descriptions. It thus follows exactly the opposite approach as 

SA-REST and hRESTS which annotate existent 

documentations. The reasoning behind this is that developers 

usually prefer to write code than documentation. Given that 

this work is based on SEREDASj we describe it in more detail 

in the next section. 

III. SEREDASJ 

SEREDASj [1] specifies the syntactic structure of a specific 

JSON representation. Additionally, it allows to reference JSON 

elements to concepts in an ontology and to further describe the 

element itself by semantic annotations. Figure 1 depicts the 

structure of a SEREDASj description. 

A description consists of metadata and a description of the 

structure of the JSON instance data representations it describes. 

The metadata contains information about the hyperlinks related 

to the instance data and prefix definitions to abbreviate long 
URIs in the semantic annotations. The link descriptions contain 

all the necessary information for a client to retrieve and 

manipulate instance data. Additionally to the link’s target, its 

media type and the target’s SEREDASj description, link 

descriptions can contain the needed SEREDASj request 

description to create requests as well as semantic annotations to 
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describe the link, e.g., its relation to the current representation. 

The link’s target is expressed by link templates where the asso-

ciated variables can be bound to an element in the instance data 

and/or linked to a conceptual model, e.g., a class or property in 

an ontology. The link template’s variables can be further 

described by generic semantic annotations in the form of 

predicate-object pairs. The links’ SEREDASj request descrip-

tion allows a client to construct the request bodies used in 

POST or PUT operations to create or update resources. This 
represents a current limitation as it requires the request bodies 

to be serialized in JSON. Currently there are also no 

mechanisms to describe, e.g., required HTTP headers which 

are often needed for features such as authentication. We plan to 

address these limitations by the creation of a lightweight 

ontology to describe exactly those aspects. 

The description of the structure of instance representations 

(denoted as element description in Figure 1) defines the al-

lowed JSON data type(s) as well as links to conceptual models. 

Furthermore, it may contain semantic annotations to describe 

an element and, if the element represents either a JSON object 

or array, a description of its properties respectively items in 
term of, again, an element description. The structure of the 

JSON instance arises out of these nested element descriptions. 

To allow reuse, the type of an element description can be set to 

the URI of another model definition or another part within the 

current model definition. To reference different parts of a 

model, a slash-delimited fragment resolution is used. 

By describing all the important aspects of a resource 

representation, SEREDASj not only allows extracting hyper-

links, but also creating a human-readable documentation of the 

data format and translating the JSON representation to a RDF 

representation. This requires a mapping of the JSON structure 
to an ontology. The mapping strategy is similar to the table-to-

class, column-to-predicate strategy of current relational 

database-to-RDF approaches; JSON objects are mapped to 

classes, all the rest to predicates. 

SEREDASj descriptions don’t have to be complete, i.e., 

they do not need to describe every element in all details. If an 

unknown element is encountered in an instance representation, 

it is simple ignored. This way, SEREDASj allows forward 

compatibility as well as extensibility and diminishes the 

coupling. 

IV. REQUIREMENTS 

Currently, in mashup development, developers have to deal 

with a plethora of heterogeneous data formats and service 

interfaces for which little tooling support is available. RDF, the 

preferred data format of the Semantic Web, is one attempt to 

build a universal applicable data format to ease data 

integration, but, unfortunately, current Semantic Web 
applications mostly provide just read-only interfaces to their 

underlying data. We believe it should be feasible to standardize 

and streamline the mashup development process by combining 

technologies from, both, the world of Web APIs and the 

Semantic Web. This would, in the first place, result in higher 

productivity which could subsequently lead to a plethora of 

new applications. Potentially it could also foster the creation of 

mashup editors at higher levels of abstraction which could, 

hopefully, even allow non-technical experts to create mashups 

fulfilling their situational needs. 

Based on the issues and limitations outlined in the previous 

sections and taking into account our experience in creating 

mashups and web applications, we derived a set of require-

ments for our proposal which we see as a first step towards this 

ambitious goal. 

To be widely accepted the model has to be based on core 

Web standards. That means it should use Uniform Resource 

Identifiers (URIs) for identifying resources, the Hypertext 

Transfer Protocol (HTTP) for accessing and modifying 

resource representations, and the Resource Description 

Framework (RDF) as the unified data model for describing 
resources. To ease tasks such as data integration, a uniform 

interface to access heterogeneous data sources in a uniform and 

intuitive way, has to be provided. This, in turn, will lead to 

reusability and flexibility which are important aspects for the 

adoption of such a new approach. By having semantically 

annotated data, a developer could also be supported in the data 

integration and mediation process. For instance, a typical 

mashup combining and showing data from different sources on 

a map could be created automatically. The widget would be 

able to automatically figure out which fields in the 

representation represent the needed coordinates and in 

consequence render the data on the map. This would render the 

creation of dashboards, an important business use case, much 

simpler and eliminate a lot of the usually needed data 

mediation code. Another feature demanding a semantic 

description of a service interface, especially for JSON-based 

services, is the ability to create more flexible and dynamic 
service consumers or clients. JSON, for instance, has no built-

in support for hyperlinks which makes it impossible to build 

services following the hypertext as the engine of application 

state (HATEOAS) constraint without additional out-of-band 

information. This leads to the undesirable consequence of 

tighter coupled services. By using semantic annotations, the 

client will not only be able to figure out which elements in a 

JSON representation represent URIs, but also what these URIs 

and all the other elements mean. To be able to evolve systems 

and build upon existing infrastructure, it is an important 

requirement that no, or just minimal changes of the existing 

system are required 

Summarized, the most important aspects are how resources 

can be accessed, how they are represented, and how they are 

interlinked. A mashup should then be able to retrieve and 

manipulate representations of these resources. 

V. INTEGRATING WEB APIS INTO THE WEB OF DATA 

Based on the requirements outlined in the previous section, 

we propose a new reference model for integrating traditional 

Web service interfaces into the Web of Data in this section. 

This might be used to standardize and streamline the mashup 

creation process and should result in a global read-write graph 

of data. 



Figure 2 shows the architecture of our approach. We 

broadly distinguish between an application-specific (at the top) 

and an application-independent layer (at the bottom). The 

application-independent layer at the bottom is used as a generic 

data access layer. It separates the application and presentation 

logic from the common need to manage and manipulate data 

from a plethora of different data sources. This separation of 

concerns should result in better reusability and increased 

development productivity. 

Data from traditional, JSON-based Web services, which are 

described by SEREDASj, are translated into RDF data and 

stored along with data from native RDF sources such as 
SPARQL endpoints, static RDF dumps, or RDF embedded in 

HTML documents in a local triple store. This unification of the 

data format is the first step for the integration of these 

heterogeneous data sources. We use RDF because it reflects the 

way data is stored and interlinked on the Web. The fact that it 

is schema-free and based on triples makes it the lowest 

common denominator for heterogeneous data sources, flexible, 

and easily evolvable. In addition to acting as a data integration 

layer, this local triple store is also used for caching the data 

which is a fundamental requirement in network-based 

applications. 

All data modifications are passed through the data access 

and persistence layer and will eventually be transferred back to 

the originating data source. The interface connecting the data 

access layer and the business logic layer has to be aware of 

which data can be changed and which cannot since some data 

sources or part of the data representations might be read-only. 

Depending on the scenario, a developer might choose to 

include a storage service (either a triple store or a traditional 

Web API) which allows storing changes even to immutable 

data. It is then the responsibility of the data integration layer to 

―replace‖ or ―overwrite‖ this read-only data with its 
superseding data. Keeping track of the data’s provenance is 

thus a very important feature. 

In order to decouple the application-specific layer from the 

application-independent data layer, the interface between them 

has to be standardized. There exist already a standard and a 

working draft for that, namely SPARQL [6] and SPARQL 

Update [7]. We reuse them in order to build our approach upon 

existing work. Of course, an application developer is free to 
add another layer of abstraction on top of that—similar to the 

common practice of using an O/R mapper (object-relational 

mapper) to access SQL databases. 

While this three-tier architecture is well known and widely 

used in application development, to our best knowledge it has 

not been used for integrating Web services into the Semantic 

Web. Furthermore this integration approach has not been used 
to generalize the interface of Web services. Developers are still 

struggling with highly diverse Web service interfaces.  

VI. TRANSLATING SPARQL UPDATE TO HTTP REQUESTS 

As previously outlined, a big part of the current Semantic 

Web consists of data transformed from Web APIs or relational 

databases to RDF. In [1] we demonstrated how data exposed 
by SEREDASj-described Web services can be harvested and 

transformed into RDF. Thus, in this paper we concentrate on 

how data can be updated and how new data can be inserted into 

those ―legacy‖ data sources. In the following description we 

assume that all data of interest and the resulting Web of inter-

linked SEREDASj descriptions have already been retrieved 

(whether this means crawled or queried specifically is irre-

levant for this work). The objective is to update the harvested 

data or to add new data by using SPARQL Update. 

SPARQL Update manipulates data by either adding or 

removing triples from a graph. The INSERT DATA and DELETE 

DATA operations add respectively remove a set of triples from a 

graph by using concrete data (no named variables). In contrast, 

the INSERT and DELETE operations also accept templates and 
patterns. SPARQL has no operation to change an existing triple 

as triples are considered to be binary: the triple either exists or 

it does not. This is probably the biggest difference to SQL and 

Web APIs and complicates the translation between a SPARQL 

query and the equivalent HTTP requests to interact with a Web 

service. 

A. Translating INSERT DATA and DELETE DATA 

In regard to a Web service, an INSERT DATA operation, e.g., 

can either result in the creation of a new resource or in the 
manipulation of an existing one if a previously unset attribute 

Application specific 

JSON Web APIs 
described by SEREDASj 

Data transformation and persistence layer 

XML services  
(not supported yet) 

XML 

Data access, integration and caching layer 

RDF 

Business logic layer 

Presentation logic layer 

Data access API: SPARQL + SPARQL Update 

Application independent (data layer) 

Figure 2.  A reference model for integrating Web APIs into the Web of Data 
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of an existing resource is set. The same applies for a DELETE 

DATA operation which could just unset one attribute of a 
resource representation or delete a whole resource. A resource 

will only be deleted if all triples describing that resource are 

deleted. This mismatch or, better, conceptual gap between 

triples and resource attributes implies that constraints imposed 

by the Web service’s interface are transferred to SPARQL’s 

semantic layer. In consequence some operations which are 

completely valid if applied to a native triple store are invalid 

when applied to a Web API. If these constraints are 

documented in the interface description, i.e., the SEREDASj 

document, in the form of semantic annotations, a client is able 

to construct valid requests respectively to detect invalid 

requests and to give meaningful error messages. If these 

constraints are not documented, a client has no choice but to try 
and issue requests to the server and evaluate its response. This 

is similar to HTML forms with, and without client side form 

validation in the human Web. 

In order to better explain the translation algorithm, and as a 

proof of concept, we implemented a simple publication 

management Web service whose interface is shown in 

Figure 3. Its only function is to store publications and their 

respective authors via a RESTful interface. The CRUD oper-

ations are mapped to the HTTP verbs POST, GET, PUT, and 

DELETE and no authentication mechanism is used as we cur-

rently do not have an ontology to describe this in a SEREDASj 

document (this is a limitation that will be addressed in future 

work). 

The author representations can be accessed by 

/author/{id} URIs while the publications are accessible by 

/publication/{id} URIs. Both can be edited by PUTing an 

updated JSON representation to the respective URI. New 
authors and publications can be created by POSTing a JSON 

representation to the collection URI. The representations for 

updated respectively new resources consist of the fields marked 

in gray; the ones denoted with an X are mandatory. Fields, such 

as the IDs, which are not highlighted, are not part of requests as 

they are managed by the Web service and can’t be changed by 

a client. All this information as well as the mapping to the 

ontologies as shown in Figure 3 is described machine-readable 

by SEREDASj documents. 

Since SPARQL differentiates between data and template 

operations, we split the translation algorithm into two parts. 

Algorithm 1 translates SPARQL DATA operations to HTTP 

requests interacting with the Web service and Algorithm 2 

deals with SPARQL’s DELETE/INSERT operations using 

patterns and templates. 

Listing 1 contains an exemplary INSERT DATA operation 

which we will use to explain Algorithm 1. It creates a new 

publication and a new author. The publication is linked to the 

newly created author as well as to an existing one. 

To translate the operations in Listing 1 into HTTP requests 

suitable to interact with a Web service, in the first step (line 2 

in Algorithm 1), all potential requests are retrieved. This is 

done by retrieving all SEREDASj descriptions which contain 

model references corresponding to classes or predicates used in 

the SPARQL triples; this step also takes into consideration 

whether an existing resource should be updated or a new one 

created. Since Listing 1 does not reference existing resources 

(auth:cg789 in line 11 is just used as an object), all potential 

HTTP requests have to create new resources, i.e., have to be 

POST requests. In our trivial example we get two potential 

requests, one for the creation of a new publication resource and 

a second for a new author resource. These request templates are 

then filled with information from the SPARQL triples (line 6) 

as well as with information stored in the local triple store 

(line 7). Then, provided a request is valid (line 8), i.e., it 

contains all the mandatory data, it will be submitted (line 9). As 

shown in Listing 2, the first valid request creates a new 

publication (lines 1-3). Since the ID of the blank node 

_:author1 is not known yet (it gets created by the server), it is 
simple ignored. Provided the HTTP request was successful, in 

the next step the response is parsed and the new triples exposed 

by the Web service are removed from the SPARQL triples 

(line 11) and added to the local triple store (line 12). 

Furthermore the blank nodes in the remaining SPARQL triples 

are replaced with concrete terms. In our example this means 

that the triples in line 8, 9, and 11 in Listing 1 are removed and 

1 do 

2   requests ← retrievePotentialRequests(triples) 

3   progress ← false 

4   while requests.hasNext() = true do 

5     request ← requests.next() 

6     request.setData(triples) 

7     request.setData(tripleStore) 

8     if isValid(request) = true then 

9       if request.submit() = success then 

10         resp ← request.parseResponse() 

11         triples.update(resp.getTriples()) 

12         tripleStore.update(resp.getTriples()) 

13         requests.remove(request) 

14         progress ← true 

15       end if 

16     end if 

17   end while 

18 while progress = true 

19 if triples.empty() = true then 

20   success() 

21 else 

22   error(triples) 

23 end if 

Algorithm 1.  SPARQL DATA operations to Web API translation algorithm 

/author/{id}  /publication/{id} 

foaf:Person   foaf:Document  
id ex:persId   id ex:pubId  

name foaf:givenName X  title dc:title X 

lastname foaf:familyName X  authors[] dc:creator X 

address v:adr    id ex:persId X 

 city v:locality    name foaf:name  

 country v:country-name     
 

Figure 3.  Publication management service interface 



the blank node in the triple in line 10 is replaced by the newly 

created /publication/p489 URI. Finally, the request is 
removed from the potential requests list and a flag is set 

(line 14, Listing 2) signaling that progress has been made 

within the current do while iteration. If in one loop iteration, 

which cycles through all potential requests, no progress has 

been made, the process is stopped (line 18). In our example the 

process is repeated for the create author request which again 

results in a POST request (line 6-10, Listing 2). Since there are 

no more potential requests available, the next iteration of the do 

while loop begins. 

The only remaining triple is the previously updated triple 
in line 10 (Listing 1), thus, the only potential request this time 

is a PUT request updating the newly created 

/publication/p489/. As before, the request template is filled 

with ―knowledge‖ from the local triple store and the remaining 

SPARQL triple and eventually processed. Since there are no 

more SPARQL triples to process, the do while loop terminates 

and a success message is returned to the client (line 20, 

Listing 2) as all triples have been successfully processed. 

B. Translating DELETE/INSERT operations 

In contrast to the DATA-form operations that require 

concrete data and do not allow the use of named variables, the 

DELETE/INSERT operations are pattern-based using templates to 

delete or add groups of triples. These operations are processed 

by first executing the query patterns in the WHERE clause which 

bind values to a set of named variables. Then, these bindings 

are used to instantiate the DELETE and the INSERT templates. 
Finally, the concrete deletes are performed followed by the 

concrete inserts. The DELETE/INSERT operations are, thus, in 

fact, transformed to concrete DELETE DATA/INSERT DATA 

operations before execution. We exploit this fact in 

Algorithm 2 which transforms DELETE/INSERT operations to 

DELETE DATA/INSERT DATA operations which are then 

translated by Algorithm 1 into HTTP requests. 

Listing 3 contains an exemplary DELETE/INSERT operation 

which replaces the country name of all authors whose given 

name is ―Christian‖ and whose family name is ―Gütl‖ with 

―Austria‖. This operation is first translated to a DELETE DATA/

INSERT DATA operation by Algorithm 2 and then to HTTP 

requests by Algorithm 1. 

The first step (line 1, Algorithm 2) is to create a SELECT 

query out of the WHERE clause. This query is then executed on 

the local triple store returning the bindings for the DELETE and 

INSERT templates (line 2). This implies that all relevant data 

has to be included in the local triple store (an assumption made 

earlier in this work), otherwise the operation might be executed 

just partially. For each of the retrieved bindings (line 4), one 

DELETE DATA (line 5) and one INSERT DATA (line 7) operation 
are created. In our example the result consists of a single 

binding, namely <author/cg789> for x, 

</author/cg789#address> for addr (this is SEREDASj’s way 

1 PREFIX foaf: <http://xmlns.com/foaf/0.1/> 

2 PREFIX dc:   <http://purl.org/dc/elements/1.1/> 

3 PREFIX v:    <http://www.w3.org/2006/vcard/ns#>  

4 PREFIX ex:   <http://example.com/onto/> 

5 PREFIX auth: <http://example.com/author/> 

6  

7 INSERT DATA { 

8   _:public1 a foaf:Document ; 

9             dc:title "My first paper" ; 

10             dc:creator _:author1 ; 

11             dc:creator auth:cg789 . 

12   _:author1 a foaf:Person ; 

13             foaf:givenName "Markus" ; 

14             foaf:familyName "Lanthaler" ; 

15             v:adr _:addr1 . 

16   _:addr1 v:country-name "Italy" . 

17 } 

Listing 1.  Examplary INSERT DATA operation 

1 DELETE { 

2   ?addr v:country-name ?country . 

3 } 

4 INSERT { 

5   ?addr v:country-name "Austria" . 

6 } 

7 WHERE { 

8   ?x a foaf:Person ; 

9      foaf:givenName "Christian" ; 

10      foaf:familyName "Gütl" ; 

11      v:adr ?addr . 

12   ?addr v:country-name ?country . 

13 } 

Listing 3. Examplary DELETE/INSERT operation 

1 → POST /publication/ 

2     { "title": "My first paper",  

3       "authors": [ { "id": "cg789" } ] } 

4 ← 201 Created 

5   Location: /publication/p489/ 

 

6 → POST /author/ 

7     { "name": "Markus", "lastname": "Lanthaler", 

8       "address": { "country": "Italy" } } 

9 ← 201 Created 

10   Location: /author/ml980 

 

11 → PUT /publication/p489 

12     { "title": "My first paper",  

13       "authors": [ { "id": "cg789" },  

14                    { "id": "ml980" } ] } 

15 ← 200 OK 

Listing 2.  INSERT DATA operation translated to HTTP requests 

1 select ← createSelect(query) 

2 bindings ← tripleStore.execute(select) 

3  

4 for each binding in bindings do 

5   deleteData ← createDeleteData(query, binding) 

6   operations.add(deleteData) 

7   insertData ← insertDeleteData(query, binding) 

8   operations.add(insertData) 

9 end for 

10  

11 operations.sort() 

12 translateDataOperations(operations) 

Algorithm 2.  SPARQL DELETE/INSERT operations to HTTP requests 

translation algorithm 



to address parts within a JSON representation), and 

"Österreich" for the variable country. Therefore, only one 

DELETE DATA and one INSERT DATA operation are created as 

shown in Listing 4. Finally, these operations are sorted 

(line 11; deletes have to be executed before inserts) and 

translated into HTTP requests (line 12) by Algorithm 1. 

In many cases, as demonstrated in the example, a 

DELETE/INSERT operation will actually represent a replacement 

of triples. Thus, both, the DELETE DATA and the INSERT DATA 

operation are performed locally before issuing the HTTP 
request. This optimization reduces the number of HTTP 

requests since attributes do not have to be set to NULL before 

getting set to the desired value. In our example this 

consolidates the two PUT requests to one. 

VII. CONCLUSIONS AND FUTURE WORK 

In this paper, we presented a novel approach to manipulate 

data exposed by a RESTful Web service via SPARQL Update. 

We introduced two algorithms to translate SPARQL Update 

operations to HTTP requests interacting with a SEREDASj-

described Web API. This creates a standardized interface 

which not only increases the developer’s productivity but also 
improves code reusability. 

There are still heated discussions in the community about 

how machine-readable interface descriptions, such as 

SEREDASj, affect the coupling between a service and its 

clients. Our viewpoint is pragmatic. Descriptions inherently 

introduce coupling but without descriptions no interpretation of 

the exchanged data and thus no automatic invocation is 

possible. We argue that whether these descriptions are machine 

readable or not, does not affect the degree of coupling between 

a service and its clients. 

In future work we would like to extend SEREDASj’s ex-

pressivity by creating a lightweight ontology to describe differ-

ent aspects, such as, e.g., the authentication mechanism, of a 

service interface. We would also like to extend the model to 

other content types beyond JSON starting with the widely used 

XML and application/x-www-form-urlencoded format. 

Another current limitation that has to be addressed is the need 

to first index all data in a local triple store; potentially this 

could be done on the fly. Moreover, research needs to be done 

on the conceptual gap between SPARQL’s triple model and the 

Web services’ resource model as constraints imposed by the 

Web services’ interfaces are transferred to SPARQL’s seman-

tic layer. This leads to the rejection of operations which would 
be completely valid when executed on native triple store. 
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1 DELETE DATA { 

2  </author/cg789#address> v:country-name "Österreich" . 

3 } 

4 INSERT DATA { 

5  </author/cg789#address> v:country-name "Austria" . 

6 } 

Listing 4. DELETE DATA/INSERT DATA operations 

generated by Algorithm 2 out of Listing 3 


