
Aligning Web Services with the Semantic Web to

Create a Global Read-Write Graph of Data

Markus Lanthaler 1

1
 Institute for Information Systems and Computer Media

Graz University of Technology

Graz, Austria

Christian Gütl 1,2
2
 School of Information Systems

Curtin University of Technology

Perth, Australia

Abstract—Despite significant research and development efforts,

the vision of the Semantic Web yielding to a Web of Data has not

yet become reality. Even though initiatives such as Linking Open

Data gained traction recently, the Web of Data is still clearly out-

paced by the growth of the traditional, document-based Web.

Instead of releasing data in the form of RDF, many publishers

choose to publish their data in the form of Web services. The

reasons for this are manifold. Given that RESTful Web services

closely resemble the document-based Web, they are not only per-

ceived as less complex and disruptive, but also provide read-write

interfaces to the underlying data. In contrast, the current

Semantic Web is essentially read-only which clearly inhibits net-

working effects and engagement of the crowd. On the other hand,

the prevalent use of proprietary schemas to represent the data

published by Web services inhibits generic browsers or crawlers

to access and understand this data; the consequence are islands

of data instead of a global graph of data forming the envisioned

Semantic Web. We thus propose a novel approach to integrate

Web services into the Web of Data by introducing an algorithm

to translate SPARQL queries to HTTP requests. The aim is to

create a global read-write graph of data and to standardize the

mashup development process. We try to keep the approach as

familiar and simple as possible to lower the entry barrier and

foster the adoption of our approach. Thus, we based our proposal

on SEREDASj, a semantic description language for RESTful

data services, for making proprietary JSON service schemas

accessible.

Keywords—Web services; Web APIs; Semantic Web; Linked

Data; SEREDASj; SPARQL; JSON; REST; Internet

I. INTRODUCTION

Despite the recent uptake of the Linked Data movement,

the vision of a Semantic Web, which has been around for more

than fifteen years, still has a long way to go before mainstream

adoption will be achieved. The reasons for this are manifold.

First of all the Semantic Web suffers from a classical chicken-

and-egg problem as there are no clear incentives for developers

to use it. This aspect is improving recently as major search en-
gines started to index some structured data such as RDFa and

microformats. Another factor, especially in the enterprise

space, is that the Semantic Web is perceived as a disruptive

technology, making it a show-stopper for organizations need-

ing to evolve their systems and build upon existing infra-

structure investments. Additionally, the current Semantic Web

approaches usually provide just read-only interfaces to the

underlying data. This clearly limits the usefulness and inhibits

networking effects and engagement of the crowd. Beside these

technical issues, a lot of developers are simply overwhelmed

by the complexity, perceived or otherwise, or are just reluctant

to use new technologies. Nevertheless, we think most Web

developers fear to use Semantic Web technologies for some

reason or another; a phenomenon we denoted as

Semaphobia [1]. To help developers get past this fear, and to

show them that it is baseless, clear incentives along with simple

specifications and guidelines are necessary. Wherever possible,

upgrade paths for existing systems should be provided to build

upon existing investments. RESTful data services could prove

to be a viable solution to these problems.

Contrary to the adoption of the Semantic Web, Web

services, especially RESTful ones using JSON (JavaScript

Object Notation) [2] as the serialization format, are increa-

singly popular. Recently the term Web API has emerged as the

collective name for RESTful Web services in order to

distinguish them from their flawed [3] SOAP-based counter-

parts. Thus, throughout this paper, the terms Web API and

RESTful Web service are considered interchangeable.

According to ProgrammableWeb’s statistics [4], 2010 has

seen a twofold increase in new APIs per month compared to
the year before. 74% of the APIs are now RESTful and 45% of

them use JSON as the data format; some of the biggest service

providers’ APIs such as, e.g., Facebook’s Graph API [5], are

now JSON-only. It is interesting to note that more and more

companies are starting to build APIs as their primary product

instead of just providing APIs as extensions of existing

products; their whole business model is now based upon their

APIs. In spite of their growing adoption, Web APIs still have

some shortcomings.

The major problem of RESTful services is that no agreed

machine-readable description format exists to document them.

All the required information of how to invoke them and how to
interpret the various resource representations is communicated

out-of-band by human-readable documentations. In conse-

quence, machine-to-machine communication is often based on

static knowledge and tight coupling to resolve those issues. The

challenge is thus to bring some of the human Web’s adaptivity

to the Web of machines to allow the building of loosely

coupled, reliable, and scalable systems. After all, a Web service

can be seen as a special Web page meant to be consumed by an

autonomous program as opposed to a human being. Another

issue is the prevalent use of proprietary schemas to represent

data by these Web APIs. This inhibits the ability of generic

browsers or crawlers to access and understand this data.

Since REST’s principles align well with Linked Data

principles, it would seem natural to combine their strengths.
Nevertheless, the two remain largely separated in practice.

Instead of providing Linked Data via RESTful Web services,

current efforts deploy centralistic SPARQL endpoints or

Tabulator-like interfaces, or simple upload static dumps of the

data in order to provide access to the data. This rarely reflects

the nature of the data, i.e., descriptions of interlinked resources.

Just as public SQL endpoints are uncommon nowadays, public

SPARQL endpoints are not expected to become widespread in

the near future. This is because it is considerably more

expensive to expose SQL or SPARQL endpoints than easier-to-

optimize RESTful service interfaces. We thus propose an

approach were Web services are integrated with data in RDF

and accessed by using SPARQL.

In [1] we laid out the foundation for the integration of

RESTful data services and the Web of Data by creating a
semantic description language for JSON services. We choose

to base our approach on JSON instead of XML to avoid the

inherent impedance mismatch between XML and object

oriented programming constructs (the so called O/X impedance

mismatch). JSON, the JavaScript Object Notation [2] was

specifically designed for data interchange. It is a lightweight,

language-independent data-interchange format that is easy to

parse, and easy to generate. Furthermore, it is much less com-

plex than XML as its specification [2] consists of merely four

pages (ten pages in total, including the table of content and

other mostly irrelevant material).

The primary contribution of this work is a new model for
read-write capable Linked Data applications by integrating

JSON services into the Web of Data. This aims to generalize

the application respectively mashup development by

homogenizing the proprietary schemas used in today’s Web

services to a common data format, namely RDF. The approach

is based on SEREDASj, a semantic description language for

JSON services we introduced in [1].

The reminder of the paper is organized as follows. First, in

section II, we give an overview of related work. Then, in

section III we briefly present SEREDASj. After discussing the

requirements in section IV, we propose a novel approach to
integrate Web services into the Linked Data cloud in section V

by introducing an algorithm to translate SPARQL queries to

HTTP requests in section VI. Finally, section VII concludes the

paper and gives an overview of future work.

II. RELATED WORK

As previously outlined, one of the limitations of the current
Semantic Web is that it usually just provides a read-only

interface to the underlying data. SPARQL [6], the standardized

query language for RDF just defines how to retrieve data, not

how to manipulate it. This limitation is addressed by

SPARQL Update [7], which is still a working draft. So, while

several Semantic Web browsers, such as Tabulator [8],

Oink [9] or Disco [10], have been developed to display RDF

data, the challenge of how to edit, extend or annotate this data

has so far been left largely unaddressed. There exist a few

single-graph editors including RDFAuthor [11] and

ISAViz [12] but, to our best knowledge, Tabulator Redux [13]

is the only editor that allows the editing of graphs derived from

multiple sources.

To mitigate this situation, the pushback project [14] was

initiated in 2009 (unfortunately it is not clear whether this

project is still active) to develop a method to write data back

from RDF graphs to non-RDF data sources such as Web APIs.

This surely makes a lot of sense as large parts of the current

Web of Data are generated from non-RDF databases by tools

such as D2R [15] or Triplify [16]. The approach chosen by the
pushback project was to extend the RDF wrappers, which

transform non-RDF data from Web APIs to RDF data, to

additionally support write operations. This is achieved by a

process referred to as fusion that automatically annotates an

existing HTML form with RDFa. The resulting RDForm then

reports the changed data as RDF back to the pushback

controller which in turn relays the changes to the RDF write-

wrapper that then eventually translates them into an HTTP

request understandable to the Web API. One of the major

challenges is to create the read-write wrappers as there are no

agreed standards for describing RESTful services; neither

syntactically nor semantically. Exposing these Web APIs as

Linked Data is therefore more an art than a science and thus the

numerous proposals for describing RESTful services follow

quite different approaches.

SA-REST [17] and hRESTS [18] are two approaches that

enrich the, mostly already existing human-readable HTML

documentation with RDFa or microformats to make it

machine-processable. The biggest difference between them is

that SA-REST has some built in support for semantic annota-

tions whereas hRESTS provides nothing more than a label for

the inputs and outputs. SA-REST uses the concept of lifting

and lowering schema mappings to translate the data structures

in the input and outputs to the data structure of an ontology, the
grounding schema, to facilitate data integration.

MicroWSMO [19] is an extension for hRESTS adding similar

semantic annotations.

The Web Application Description Language (WADL) [20]
falls in another category as it is closely related to WSDL.

WADL describes a service by creating a monolithic XML file

containing all the information about the service interface. This

syntactic description of the service can then be semantically

annotated by, for instance, SBWS (Semantic Bridge for Web

Services) [21]. In principle, a RESTful service could even be

described by using WSDL 2.0 with SAWSDL and an ontology

like OWL-S or WSMO-Lite. As a complete description of

these ontologies and interface description formats is beyond the

scope of this paper we would like to refer you to [22].

The problem with all of the above described approaches is

that they rely heavily on RPC’s (Remote Procedure Call)

flawed [3] operation-based model ignoring the fundamental

architectural properties of REST. Instead of describing the re-

source representations, and thus allowing a client to understand

them, they adhere to the RPC-like model of describing the in-

puts and outputs as well as the supported operations which

results in tight coupling. The obvious consequence is that these

approaches do not align well with clear RESTful service
design.

One of the approaches avoiding the RPC-orientation, and

thus more suitable for RESTful services, is ReLL [23], the

Resource Linking Language. It is a language to describe

RESTful services with emphasis on the hypermedia

characteristics of the REST model. This allows, e.g., a crawler

to automatically retrieve the data exposed by Web APIs. One

of the aims of ReLL is to transform this data to RDF in order to

harvest those already existing Web resources and to integrate

them into the Semantic Web. Nevertheless, ReLL does not sup-

port any semantic annotations but relies on XSLT transforma-

tions to do so. This clearly limits ReLL’s expressivity as it is
not able to describe the resource representations semantically.

To overcome these and other shortcomings we introduced

SEREDASj [1], the description language for SEmantic REstful

DAta Services. It is similar to ReLL in that it focuses on the

description of resource representations and their

interconnections. It also allows, just as ReLL+XSLT, to trans-

form these representations to RDF. But instead of being based

upon XML as ReLL is, SEREDASj is based on JSON. By hav-

ing built-in support for semantic annotations in contrast to the

transformation process being driven by XSLT transformations,

SEREDASj supports more use cases. It is, e.g., possible to
create whole service documentations out of SEREDASj

descriptions. It thus follows exactly the opposite approach as

SA-REST and hRESTS which annotate existent

documentations. The reasoning behind this is that developers

usually prefer to write code than documentation. Given that

this work is based on SEREDASj we describe it in more detail

in the next section.

III. SEREDASJ

SEREDASj [1] specifies the syntactic structure of a specific

JSON representation. Additionally, it allows to reference JSON

elements to concepts in an ontology and to further describe the

element itself by semantic annotations. Figure 1 depicts the

structure of a SEREDASj description.

A description consists of metadata and a description of the

structure of the JSON instance data representations it describes.

The metadata contains information about the hyperlinks related

to the instance data and prefix definitions to abbreviate long
URIs in the semantic annotations. The link descriptions contain

all the necessary information for a client to retrieve and

manipulate instance data. Additionally to the link’s target, its

media type and the target’s SEREDASj description, link

descriptions can contain the needed SEREDASj request

description to create requests as well as semantic annotations to

SE
R

ED
A

Sj
 d

e
s
c

ri
p

ti
o

n

M
e

ta
d

at
a

P
re

fi
xe

s Prefix Name

URI

Li
n

ks

Media type & SEREDASj desc.

Request SEREDASj description

Target

Semantics Predicate Object(s)

Variables

Model reference

Binding

Name

Semantics

Predicate Object(s)

El
e

m
e

n
t

d
e

sc
ri

p
ti

o
n

Model reference

Type

Semantics Predicate Object(s)

Items Element description

Figure 1. The SEREDASj description model

Properties

Element description

Name

Nested element
descriptions

describe the link, e.g., its relation to the current representation.

The link’s target is expressed by link templates where the asso-

ciated variables can be bound to an element in the instance data

and/or linked to a conceptual model, e.g., a class or property in

an ontology. The link template’s variables can be further

described by generic semantic annotations in the form of

predicate-object pairs. The links’ SEREDASj request descrip-

tion allows a client to construct the request bodies used in

POST or PUT operations to create or update resources. This
represents a current limitation as it requires the request bodies

to be serialized in JSON. Currently there are also no

mechanisms to describe, e.g., required HTTP headers which

are often needed for features such as authentication. We plan to

address these limitations by the creation of a lightweight

ontology to describe exactly those aspects.

The description of the structure of instance representations

(denoted as element description in Figure 1) defines the al-

lowed JSON data type(s) as well as links to conceptual models.

Furthermore, it may contain semantic annotations to describe

an element and, if the element represents either a JSON object

or array, a description of its properties respectively items in
term of, again, an element description. The structure of the

JSON instance arises out of these nested element descriptions.

To allow reuse, the type of an element description can be set to

the URI of another model definition or another part within the

current model definition. To reference different parts of a

model, a slash-delimited fragment resolution is used.

By describing all the important aspects of a resource

representation, SEREDASj not only allows extracting hyper-

links, but also creating a human-readable documentation of the

data format and translating the JSON representation to a RDF

representation. This requires a mapping of the JSON structure
to an ontology. The mapping strategy is similar to the table-to-

class, column-to-predicate strategy of current relational

database-to-RDF approaches; JSON objects are mapped to

classes, all the rest to predicates.

SEREDASj descriptions don’t have to be complete, i.e.,

they do not need to describe every element in all details. If an

unknown element is encountered in an instance representation,

it is simple ignored. This way, SEREDASj allows forward

compatibility as well as extensibility and diminishes the

coupling.

IV. REQUIREMENTS

Currently, in mashup development, developers have to deal

with a plethora of heterogeneous data formats and service

interfaces for which little tooling support is available. RDF, the

preferred data format of the Semantic Web, is one attempt to

build a universal applicable data format to ease data

integration, but, unfortunately, current Semantic Web
applications mostly provide just read-only interfaces to their

underlying data. We believe it should be feasible to standardize

and streamline the mashup development process by combining

technologies from, both, the world of Web APIs and the

Semantic Web. This would, in the first place, result in higher

productivity which could subsequently lead to a plethora of

new applications. Potentially it could also foster the creation of

mashup editors at higher levels of abstraction which could,

hopefully, even allow non-technical experts to create mashups

fulfilling their situational needs.

Based on the issues and limitations outlined in the previous

sections and taking into account our experience in creating

mashups and web applications, we derived a set of require-

ments for our proposal which we see as a first step towards this

ambitious goal.

To be widely accepted the model has to be based on core

Web standards. That means it should use Uniform Resource

Identifiers (URIs) for identifying resources, the Hypertext

Transfer Protocol (HTTP) for accessing and modifying

resource representations, and the Resource Description

Framework (RDF) as the unified data model for describing
resources. To ease tasks such as data integration, a uniform

interface to access heterogeneous data sources in a uniform and

intuitive way, has to be provided. This, in turn, will lead to

reusability and flexibility which are important aspects for the

adoption of such a new approach. By having semantically

annotated data, a developer could also be supported in the data

integration and mediation process. For instance, a typical

mashup combining and showing data from different sources on

a map could be created automatically. The widget would be

able to automatically figure out which fields in the

representation represent the needed coordinates and in

consequence render the data on the map. This would render the

creation of dashboards, an important business use case, much

simpler and eliminate a lot of the usually needed data

mediation code. Another feature demanding a semantic

description of a service interface, especially for JSON-based

services, is the ability to create more flexible and dynamic
service consumers or clients. JSON, for instance, has no built-

in support for hyperlinks which makes it impossible to build

services following the hypertext as the engine of application

state (HATEOAS) constraint without additional out-of-band

information. This leads to the undesirable consequence of

tighter coupled services. By using semantic annotations, the

client will not only be able to figure out which elements in a

JSON representation represent URIs, but also what these URIs

and all the other elements mean. To be able to evolve systems

and build upon existing infrastructure, it is an important

requirement that no, or just minimal changes of the existing

system are required

Summarized, the most important aspects are how resources

can be accessed, how they are represented, and how they are

interlinked. A mashup should then be able to retrieve and

manipulate representations of these resources.

V. INTEGRATING WEB APIS INTO THE WEB OF DATA

Based on the requirements outlined in the previous section,

we propose a new reference model for integrating traditional

Web service interfaces into the Web of Data in this section.

This might be used to standardize and streamline the mashup

creation process and should result in a global read-write graph

of data.

Figure 2 shows the architecture of our approach. We

broadly distinguish between an application-specific (at the top)

and an application-independent layer (at the bottom). The

application-independent layer at the bottom is used as a generic

data access layer. It separates the application and presentation

logic from the common need to manage and manipulate data

from a plethora of different data sources. This separation of

concerns should result in better reusability and increased

development productivity.

Data from traditional, JSON-based Web services, which are

described by SEREDASj, are translated into RDF data and

stored along with data from native RDF sources such as
SPARQL endpoints, static RDF dumps, or RDF embedded in

HTML documents in a local triple store. This unification of the

data format is the first step for the integration of these

heterogeneous data sources. We use RDF because it reflects the

way data is stored and interlinked on the Web. The fact that it

is schema-free and based on triples makes it the lowest

common denominator for heterogeneous data sources, flexible,

and easily evolvable. In addition to acting as a data integration

layer, this local triple store is also used for caching the data

which is a fundamental requirement in network-based

applications.

All data modifications are passed through the data access

and persistence layer and will eventually be transferred back to

the originating data source. The interface connecting the data

access layer and the business logic layer has to be aware of

which data can be changed and which cannot since some data

sources or part of the data representations might be read-only.

Depending on the scenario, a developer might choose to

include a storage service (either a triple store or a traditional

Web API) which allows storing changes even to immutable

data. It is then the responsibility of the data integration layer to

―replace‖ or ―overwrite‖ this read-only data with its
superseding data. Keeping track of the data’s provenance is

thus a very important feature.

In order to decouple the application-specific layer from the

application-independent data layer, the interface between them

has to be standardized. There exist already a standard and a

working draft for that, namely SPARQL [6] and SPARQL

Update [7]. We reuse them in order to build our approach upon

existing work. Of course, an application developer is free to
add another layer of abstraction on top of that—similar to the

common practice of using an O/R mapper (object-relational

mapper) to access SQL databases.

While this three-tier architecture is well known and widely

used in application development, to our best knowledge it has

not been used for integrating Web services into the Semantic

Web. Furthermore this integration approach has not been used
to generalize the interface of Web services. Developers are still

struggling with highly diverse Web service interfaces.

VI. TRANSLATING SPARQL UPDATE TO HTTP REQUESTS

As previously outlined, a big part of the current Semantic

Web consists of data transformed from Web APIs or relational

databases to RDF. In [1] we demonstrated how data exposed
by SEREDASj-described Web services can be harvested and

transformed into RDF. Thus, in this paper we concentrate on

how data can be updated and how new data can be inserted into

those ―legacy‖ data sources. In the following description we

assume that all data of interest and the resulting Web of inter-

linked SEREDASj descriptions have already been retrieved

(whether this means crawled or queried specifically is irre-

levant for this work). The objective is to update the harvested

data or to add new data by using SPARQL Update.

SPARQL Update manipulates data by either adding or

removing triples from a graph. The INSERT DATA and DELETE

DATA operations add respectively remove a set of triples from a

graph by using concrete data (no named variables). In contrast,

the INSERT and DELETE operations also accept templates and
patterns. SPARQL has no operation to change an existing triple

as triples are considered to be binary: the triple either exists or

it does not. This is probably the biggest difference to SQL and

Web APIs and complicates the translation between a SPARQL

query and the equivalent HTTP requests to interact with a Web

service.

A. Translating INSERT DATA and DELETE DATA

In regard to a Web service, an INSERT DATA operation, e.g.,

can either result in the creation of a new resource or in the
manipulation of an existing one if a previously unset attribute

Application specific

JSON Web APIs
described by SEREDASj

Data transformation and persistence layer

XML services
(not supported yet)

XML

Data access, integration and caching layer

RDF

Business logic layer

Presentation logic layer

Data access API: SPARQL + SPARQL Update

Application independent (data layer)

Figure 2. A reference model for integrating Web APIs into the Web of Data

SPARQL endpoints
and static RDF data

of an existing resource is set. The same applies for a DELETE

DATA operation which could just unset one attribute of a
resource representation or delete a whole resource. A resource

will only be deleted if all triples describing that resource are

deleted. This mismatch or, better, conceptual gap between

triples and resource attributes implies that constraints imposed

by the Web service’s interface are transferred to SPARQL’s

semantic layer. In consequence some operations which are

completely valid if applied to a native triple store are invalid

when applied to a Web API. If these constraints are

documented in the interface description, i.e., the SEREDASj

document, in the form of semantic annotations, a client is able

to construct valid requests respectively to detect invalid

requests and to give meaningful error messages. If these

constraints are not documented, a client has no choice but to try
and issue requests to the server and evaluate its response. This

is similar to HTML forms with, and without client side form

validation in the human Web.

In order to better explain the translation algorithm, and as a

proof of concept, we implemented a simple publication

management Web service whose interface is shown in

Figure 3. Its only function is to store publications and their

respective authors via a RESTful interface. The CRUD oper-

ations are mapped to the HTTP verbs POST, GET, PUT, and

DELETE and no authentication mechanism is used as we cur-

rently do not have an ontology to describe this in a SEREDASj

document (this is a limitation that will be addressed in future

work).

The author representations can be accessed by

/author/{id} URIs while the publications are accessible by

/publication/{id} URIs. Both can be edited by PUTing an

updated JSON representation to the respective URI. New
authors and publications can be created by POSTing a JSON

representation to the collection URI. The representations for

updated respectively new resources consist of the fields marked

in gray; the ones denoted with an X are mandatory. Fields, such

as the IDs, which are not highlighted, are not part of requests as

they are managed by the Web service and can’t be changed by

a client. All this information as well as the mapping to the

ontologies as shown in Figure 3 is described machine-readable

by SEREDASj documents.

Since SPARQL differentiates between data and template

operations, we split the translation algorithm into two parts.

Algorithm 1 translates SPARQL DATA operations to HTTP

requests interacting with the Web service and Algorithm 2

deals with SPARQL’s DELETE/INSERT operations using

patterns and templates.

Listing 1 contains an exemplary INSERT DATA operation

which we will use to explain Algorithm 1. It creates a new

publication and a new author. The publication is linked to the

newly created author as well as to an existing one.

To translate the operations in Listing 1 into HTTP requests

suitable to interact with a Web service, in the first step (line 2

in Algorithm 1), all potential requests are retrieved. This is

done by retrieving all SEREDASj descriptions which contain

model references corresponding to classes or predicates used in

the SPARQL triples; this step also takes into consideration

whether an existing resource should be updated or a new one

created. Since Listing 1 does not reference existing resources

(auth:cg789 in line 11 is just used as an object), all potential

HTTP requests have to create new resources, i.e., have to be

POST requests. In our trivial example we get two potential

requests, one for the creation of a new publication resource and

a second for a new author resource. These request templates are

then filled with information from the SPARQL triples (line 6)

as well as with information stored in the local triple store

(line 7). Then, provided a request is valid (line 8), i.e., it

contains all the mandatory data, it will be submitted (line 9). As

shown in Listing 2, the first valid request creates a new

publication (lines 1-3). Since the ID of the blank node

_:author1 is not known yet (it gets created by the server), it is
simple ignored. Provided the HTTP request was successful, in

the next step the response is parsed and the new triples exposed

by the Web service are removed from the SPARQL triples

(line 11) and added to the local triple store (line 12).

Furthermore the blank nodes in the remaining SPARQL triples

are replaced with concrete terms. In our example this means

that the triples in line 8, 9, and 11 in Listing 1 are removed and

1 do

2 requests ← retrievePotentialRequests(triples)

3 progress ← false

4 while requests.hasNext() = true do

5 request ← requests.next()

6 request.setData(triples)

7 request.setData(tripleStore)

8 if isValid(request) = true then

9 if request.submit() = success then

10 resp ← request.parseResponse()

11 triples.update(resp.getTriples())

12 tripleStore.update(resp.getTriples())

13 requests.remove(request)

14 progress ← true

15 end if

16 end if

17 end while

18 while progress = true

19 if triples.empty() = true then

20 success()

21 else

22 error(triples)

23 end if

Algorithm 1. SPARQL DATA operations to Web API translation algorithm

/author/{id} /publication/{id}

foaf:Person foaf:Document
id ex:persId id ex:pubId

name foaf:givenName X title dc:title X

lastname foaf:familyName X authors[] dc:creator X

address v:adr id ex:persId X

 city v:locality name foaf:name

 country v:country-name

Figure 3. Publication management service interface

the blank node in the triple in line 10 is replaced by the newly

created /publication/p489 URI. Finally, the request is
removed from the potential requests list and a flag is set

(line 14, Listing 2) signaling that progress has been made

within the current do while iteration. If in one loop iteration,

which cycles through all potential requests, no progress has

been made, the process is stopped (line 18). In our example the

process is repeated for the create author request which again

results in a POST request (line 6-10, Listing 2). Since there are

no more potential requests available, the next iteration of the do

while loop begins.

The only remaining triple is the previously updated triple
in line 10 (Listing 1), thus, the only potential request this time

is a PUT request updating the newly created

/publication/p489/. As before, the request template is filled

with ―knowledge‖ from the local triple store and the remaining

SPARQL triple and eventually processed. Since there are no

more SPARQL triples to process, the do while loop terminates

and a success message is returned to the client (line 20,

Listing 2) as all triples have been successfully processed.

B. Translating DELETE/INSERT operations

In contrast to the DATA-form operations that require

concrete data and do not allow the use of named variables, the

DELETE/INSERT operations are pattern-based using templates to

delete or add groups of triples. These operations are processed

by first executing the query patterns in the WHERE clause which

bind values to a set of named variables. Then, these bindings

are used to instantiate the DELETE and the INSERT templates.
Finally, the concrete deletes are performed followed by the

concrete inserts. The DELETE/INSERT operations are, thus, in

fact, transformed to concrete DELETE DATA/INSERT DATA

operations before execution. We exploit this fact in

Algorithm 2 which transforms DELETE/INSERT operations to

DELETE DATA/INSERT DATA operations which are then

translated by Algorithm 1 into HTTP requests.

Listing 3 contains an exemplary DELETE/INSERT operation

which replaces the country name of all authors whose given

name is ―Christian‖ and whose family name is ―Gütl‖ with

―Austria‖. This operation is first translated to a DELETE DATA/

INSERT DATA operation by Algorithm 2 and then to HTTP

requests by Algorithm 1.

The first step (line 1, Algorithm 2) is to create a SELECT

query out of the WHERE clause. This query is then executed on

the local triple store returning the bindings for the DELETE and

INSERT templates (line 2). This implies that all relevant data

has to be included in the local triple store (an assumption made

earlier in this work), otherwise the operation might be executed

just partially. For each of the retrieved bindings (line 4), one

DELETE DATA (line 5) and one INSERT DATA (line 7) operation
are created. In our example the result consists of a single

binding, namely <author/cg789> for x,

</author/cg789#address> for addr (this is SEREDASj’s way

1 PREFIX foaf: <http://xmlns.com/foaf/0.1/>

2 PREFIX dc: <http://purl.org/dc/elements/1.1/>

3 PREFIX v: <http://www.w3.org/2006/vcard/ns#>

4 PREFIX ex: <http://example.com/onto/>

5 PREFIX auth: <http://example.com/author/>

6

7 INSERT DATA {

8 _:public1 a foaf:Document ;

9 dc:title "My first paper" ;

10 dc:creator _:author1 ;

11 dc:creator auth:cg789 .

12 _:author1 a foaf:Person ;

13 foaf:givenName "Markus" ;

14 foaf:familyName "Lanthaler" ;

15 v:adr _:addr1 .

16 _:addr1 v:country-name "Italy" .

17 }

Listing 1. Examplary INSERT DATA operation

1 DELETE {

2 ?addr v:country-name ?country .

3 }

4 INSERT {

5 ?addr v:country-name "Austria" .

6 }

7 WHERE {

8 ?x a foaf:Person ;

9 foaf:givenName "Christian" ;

10 foaf:familyName "Gütl" ;

11 v:adr ?addr .

12 ?addr v:country-name ?country .

13 }

Listing 3. Examplary DELETE/INSERT operation

1 → POST /publication/

2 { "title": "My first paper",

3 "authors": [{ "id": "cg789" }] }

4 ← 201 Created

5 Location: /publication/p489/

6 → POST /author/

7 { "name": "Markus", "lastname": "Lanthaler",

8 "address": { "country": "Italy" } }

9 ← 201 Created

10 Location: /author/ml980

11 → PUT /publication/p489

12 { "title": "My first paper",

13 "authors": [{ "id": "cg789" },

14 { "id": "ml980" }] }

15 ← 200 OK

Listing 2. INSERT DATA operation translated to HTTP requests

1 select ← createSelect(query)

2 bindings ← tripleStore.execute(select)

3

4 for each binding in bindings do

5 deleteData ← createDeleteData(query, binding)

6 operations.add(deleteData)

7 insertData ← insertDeleteData(query, binding)

8 operations.add(insertData)

9 end for

10

11 operations.sort()

12 translateDataOperations(operations)

Algorithm 2. SPARQL DELETE/INSERT operations to HTTP requests

translation algorithm

to address parts within a JSON representation), and

"Österreich" for the variable country. Therefore, only one

DELETE DATA and one INSERT DATA operation are created as

shown in Listing 4. Finally, these operations are sorted

(line 11; deletes have to be executed before inserts) and

translated into HTTP requests (line 12) by Algorithm 1.

In many cases, as demonstrated in the example, a

DELETE/INSERT operation will actually represent a replacement

of triples. Thus, both, the DELETE DATA and the INSERT DATA

operation are performed locally before issuing the HTTP
request. This optimization reduces the number of HTTP

requests since attributes do not have to be set to NULL before

getting set to the desired value. In our example this

consolidates the two PUT requests to one.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel approach to manipulate

data exposed by a RESTful Web service via SPARQL Update.

We introduced two algorithms to translate SPARQL Update

operations to HTTP requests interacting with a SEREDASj-

described Web API. This creates a standardized interface

which not only increases the developer’s productivity but also
improves code reusability.

There are still heated discussions in the community about

how machine-readable interface descriptions, such as

SEREDASj, affect the coupling between a service and its

clients. Our viewpoint is pragmatic. Descriptions inherently

introduce coupling but without descriptions no interpretation of

the exchanged data and thus no automatic invocation is

possible. We argue that whether these descriptions are machine

readable or not, does not affect the degree of coupling between

a service and its clients.

In future work we would like to extend SEREDASj’s ex-

pressivity by creating a lightweight ontology to describe differ-

ent aspects, such as, e.g., the authentication mechanism, of a

service interface. We would also like to extend the model to

other content types beyond JSON starting with the widely used

XML and application/x-www-form-urlencoded format.

Another current limitation that has to be addressed is the need

to first index all data in a local triple store; potentially this

could be done on the fly. Moreover, research needs to be done

on the conceptual gap between SPARQL’s triple model and the

Web services’ resource model as constraints imposed by the

Web services’ interfaces are transferred to SPARQL’s seman-

tic layer. This leads to the rejection of operations which would
be completely valid when executed on native triple store.

REFERENCES

[1] M. Lanthaler. and C. Gütl, ―A semantic description language for

RESTful data services to combat Semaphobia,‖ in Proc. 5
th

 IEEE Int.

Conf. on Digital Ecosystems and Technologies (DEST), Daejeon, Korea,

IEEE, 2011, in press.

[2] The application/json Media Type for JavaScript Object Notation

(JSON), Request for Comments 4627, Internet Engineering Task Force
(IETF), 2006.

[3] M. Lanthaler and C. Gütl, ―Towards a RESTful service ecosystem -

perspectives and challenges,‖ in Proc. 4
th
 IEEE Int. Conf. on Digital

Ecosystems and Technologies (DEST), Dubai, United Arab Emirates:

IEEE, 2010, pp. 209-214.

[4] T. Vitvar and J. Musser, ―ProgrammableWeb.com: Statistics, trends, and

best practices,‖ Keynote of the Web APIs and Service Mashups
Workshop at the European Conf. on Web Services, 2010.

[5] Facebook, Graph API, 2011,

http://developers.facebook.com/docs/reference/api/.

[6] SPARQL Query Language for RDF. W3C Recommendation, 2008,
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/.

[7] SPARQL 1.1 Update. W3C Working Draft, 2010,

http://www.w3.org/TR/2010/WD-sparql11-update-20101014/.

[8] T. Berners-Lee, Y. Chen, L. Chilton, et al., ―Tabulator: Exploring and

analyzing linked data on the semantic web,‖ in Proc. 3
rd

 Int. Semantic
Web User Interaction Workshop (SWUI 2006).

[9] O. Lassila, ―Browsing the Semantic Web,‖ in Proc. 5
th
 Int. Workshop on

Web Semantics (WebS 2006), pp. 365-369.

[10] C. Bizer and T. Gauß, ―Disco - Hyperdata Browser,‖
http://www4.wiwiss.fu-berlin.de/bizer/ng4j/disco/.

[11] D. Steer, ―RDFAuthor,‖ http://rdfweb.org/people/damian/RDFAuthor/.

[12] E. Pietriga, ―IsaViz: A visual authoring tool for RDF,‖
http://www.w3.org/2001/11/IsaViz/.

[13] T. Berners-Lee, J. Hollenbach, K. Lu, J. Presbrey, E. Pru d’ommeaux,

and M.M. Schraefel, ―Tabulator Redux: writing into the semantic web,‖

University of Southampton, UK, Rep. ECSIAM-eprint14773, 2007.

[14] pushback - Write Data Back From RDF to Non-RDF Sources,
http://www.w3.org/wiki/PushBackDataToLegacySources.

[15] C. Bizer and R. Cyganiak, ―D2R Server – Publishing relational

databases on the Semantic Web,‖ poster at the 5
th
 Int. Semantic Web

Conf., 2006.

[16] S. Auer, S. Dietzold, J. Lehmann, S. Hellmann, and D. Aumueller,

―Triplify – Lightweight linked data publication from relational

databases,‖ in Proc. 18
th
 Int. Conf. on World Wide Web (WWW 2009),

pp. 621-630.

[17] J. Lathem, K. Gomadam, and A.P. Sheth, ―SA-REST and (S)mashups:

Adding semantics to RESTful services,‖ in Proc. Int. Conf. on Semantic

Computing 2007 (ICSC2007), pp. 469-476.

[18] J. Kopecký, K. Gomadam, and T. Vitvar, ―hRESTS: An HTML

microformat for describing RESTful Web services,‖ in Proc. 2008

IEEE/WIC/ACM Int. Conf. on Web Intelligence and Intelligent Agent
Technology, pp. 619-625.

[19] M. Maleshkova and J. Kopecký, ―Adapting SAWSDL for semantic

annotations of RESTful services,‖ in On the Move to Meaningful

Internet Systems: OTM 2009 Workshops, Springer, pp. 917-926.

[20] M.J. Hadley, ―Web Application Description Language (WADL)‖, 2009.

[21] R. Battle and E. Benson, ―Bridging the semantic Web and Web 2.0 with

Representational State Transfer (REST), ― in Web Semantics: Science,

Services and Agents on the World Wide Web, vol. 6, 2008, pp. 61-69.

[22] M. Lanthaler, M. Granitzer, C. Gütl, ―Semantic Web services: State of

the Art,‖ in Proc. IADIS Int. Conf. on Internet Technologies & Society
(ITS 2010), pp. 107-114.

[23] R. Alarcón and E. Wilde, ―Linking data from RESTful services,‖ in
Proc. 3rd Workshop on Linked Data on the Web, 2010.

1 DELETE DATA {

2 </author/cg789#address> v:country-name "Österreich" .

3 }

4 INSERT DATA {

5 </author/cg789#address> v:country-name "Austria" .

6 }

Listing 4. DELETE DATA/INSERT DATA operations

generated by Algorithm 2 out of Listing 3

